• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 9
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 24
  • 22
  • 22
  • 21
  • 21
  • 20
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory (Virginia, USA) / Etude des Distributions de Partons Généralisées et de la Diffusion Compton Profondément Virtuelle sur le nucléon avec les détecteurs CLAS et CLAS12 au laboratoire Jefferson (Virginie, USA)

Guegan, Baptiste 27 November 2012 (has links)
Les distributions de Partons Généralisées (GPDs) fournissent une nouvelle description de la structure du nucléon en termes de ses constituants élémentaires, les quarks et les gluons. Les GPDs donnent accès à une image unifiée du nucléon, corrélant l'information obtenu par les mesures des Facteurs de Forme et des Distributions de Parton. Elles décrivent la corrélation entre la position transverse et la fraction d'impulsion longitudinale des partons dans le nucléon.La Diffusion Compton Profondément Virtuelle (DVCS), ou l'électroproduction d'un photon réel sur un quark du nucléon eN -> e’N’γ , est le processus exclusif le plus direct pour accéder aux GPDs.Une expérience dédiée à l'étude du DVCS avec le détecteur CLAS du laboratoire Jefferson a été réalisé en utilisant un faisceau d'électron polarisé et une cible d'hydrogène non polarisée. Cette expérience a permis de collecter des événements DVCS sur le plus large espace cinématique jamais exploré dans la région de valence: 1 < Q^2 < 4.6 〖GeV〗^2, 0.1 < x_B < 0.58, 0.09 < -t < 3 〖GeV〗^2 .Dans ce travail, nous présentons l'extraction de trois observables DVCS différents: la section efficace non polarisée, la différence de section efficace polarisée et l'asymétrie de faisceau. Nous comparons nos résultats à un model de GPD. Nous présentons une extraction préliminaire des GPDs utilisant la dernière procédure d'ajustement aux données, et une interprétation préliminaire des résultats en termes de densité de parton. / The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon.Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN -> e’N’γ, is the most straightforward exclusive process allowing access to the GPDs. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region : 1 < Q^2 < 4.6 〖GeV〗^2, 0.1 < x_B < 0.58, 0.09 < -t < 3 〖GeV〗^2 .In this work, we present the extraction of three different DVCS observables: the unpolarized cross section, the difference of polarized cross sections and the beam spin asymmetry. We present comparisons with GPD model. We show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results in terms of parton density.
42

Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theory

Schönherr, Marek 20 January 2012 (has links)
With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or Hera. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner. In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive Qed, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision observables in e.g. Drell-Yan production or semileptonic B meson decays. The results obtained for radiative tau and muon decays are also compared to experimental data. In the second part the resummation scheme introduced by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP), resumming large logarithms associated with the emission of collinear partons applicable to both Qcd and Qed, is combined with fixed-order next-to-leading matrix elements. While the focus rests on its application to Qcd corrections, this combination is discussed in detail and the implementation is presented. The resulting predictions are evaluated and compared to experimental data for a multitude of processes in four different collider environments. This formulation has been further extended to accommodate real emission corrections to beyond next-to-leading order radiation otherwise described only by the DGLAP resummation. Its results are also carefully evaluated and compared to a wide range of experimental data.:1. Introduction 1.1 Event generators 1.2 The event generator Sherpa 1.3 Outline of this thesis Part I YFS resummation & fixed order calculations 2 Yennie-Frautschi-Suura resummation 2.1 Resummation of virtual photon corrections 2.2 Resummation of real emission corrections 2.3 The Yennie-Frautschi-Suura form factor 3 A process independent implementation in Sherpa 3.1 The Algorithm 3.1.1 The master formula 3.1.2 Phase space transformation 3.1.3 Mapping of momenta 3.1.4 Event generation 3.2 Higher Order Corrections 3.2.1 Approximations for real emission matrix elements 3.2.2 Real emission corrections 3.2.3 Virtual emission corrections 4 The Z lineshape and radiative lepton decay corrections 4.1 The Z lineshape 4.1.1 Radiation pattern 4.1.2 Numerical stability 4.2 Radiative lepton decays 4.3 Summary and conclusions 5 Electroweak corrections to semileptonic B decays 5.1 Tree-level decay 5.2 Next-to-leading order corrections 5.2.1 Matching of different energy regimes 5.2.2 Short-distance next-to-leading order corrections 5.2.3 Long-distance next-to-leading order corrections 5.2.4 Structure dependent terms 5.2.5 Soft-resummation and inclusive exponentiation 5.3 Methods 5.3.1 BLOR 5.3.2 Sherpa/Photons 5.3.3 PHOTOS 5.4 Results 5.4.1 Next-to-leading order corrections to decay rates 5.4.2 Next-to-leading order corrections to differential rates 5.4.3 Influence of explicit short-distance terms 5.5 Summary and conclusions Part II DGLAP resummation & fixed order calculations 6 DGLAP resummation & approximate higher order corrections 6.1 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation 6.1.1 The naive parton model 6.1.2 QCD corrections to the parton model 6.1.3 Factorisation and the collinear counterterm 6.1.4 The DGLAP equations 6.2 Parton evolution 6.2.1 Approximate real emission cross sections 6.2.2 Parton evolution 6.2.3 Scale choices for the running coupling 6.3 Soft emission corrections 7 The reinterpretation and automisation of the POWHEG method 7.1 Decomposition of the real-emission cross sections 7.2 Construction of a parton shower 7.3 Matrix element corrections to parton showers 7.4 The reformulation of the POWHEG method 7.4.1 Approximate NLO cross sections 7.4.2 The POWHEG method and its accuracy 7.5 The single-singularity projectors 7.6 Theoretical ambiguities 7.7 MC@NLO 7.8 Realisation of the POWHEG method in the Sherpa Monte Carlo 7.8.1 Matrix elements and subtraction terms 7.8.2 The parton shower 7.8.3 Implementation & techniques 7.8.4 Automatic identification of Born zeros 7.9 Results for processes with trivial colour structures 7.9.1 Process listing 7.9.2 Tests of internal consistency 7.9.3 Comparison with tree-level matrix-element parton-shower merging 7.9.4 Comparison with experimental data 7.9.5 Comparison with existing POWHEG 7.10 Results for processes with non-trivial colour structures 7.10.1 Comparison with experimental data 7.11 Summary and conclusions 8 MENLOPS 8.1 Improving parton showers with higher-order matrix elements 8.1.1 The POWHEG approach 8.1.2 The ME+PS approach 8.2 Merging POWHEG and ME+PS - The MENLOPS 8.3 Results 8.3.1 Merging Systematics 8.3.2 ee -> jets 8.3.3 Deep-inelastic lepton-nucleon scattering 8.3.4 Drell-Yan lepton-pair production 8.3.5 W+jets Production 8.3.6 Higgs boson production 8.3.7 W-pair+jets production 8.4 Summary and conclusions Summary Appendix A Details on the YFS resummation implementation A.1 The YFS-Form-Factor A.1.1 Special cases A.2 A.2.1 Avarage photon multiplicity A.2.2 Photon energy A.2.3 Photon angles A.2.4 Photons from multipoles A.3 Massive dipole splitting functions A.3.1 Final State Emitter, Final State Spectator A.3.2 Final State Emitter, Initial State Spectator A.3.3 Initial State Emitter, Final State Spectator B Formfactors and higher order matrix elements for semileptonic B decays B.1 Form factor models of exclusive semileptonic B meson decays B.1.1 Form factors for B -> D l nu B.1.2 Form factors for B -> pi l nu B.1.3 Form factors for B -> D0* l nu B.2 NLO matrix elements B.2.1 Real emission matrix elements B.2.2 Virtual emission matrix elements B.3 Scalar Integrals B.3.1 General definitions B.3.2 Tadpole integrals B.3.3 Bubble integrals B.3.4 Triangle integrals C Explicit form of the leading order Altarelli-Parisi splitting functions C.1 Collinear limit of real emission matrix elements C.1.1 q -> gq splittings C.1.2 q -> qg splittings C.1.3 g -> qq splittings C.1.4 g -> gg splittings Bibliography
43

Measurements of prompt photon photoproduction at HERA

Lee, Sung Won January 2000 (has links)
No description available.
44

Measurements of the differential cross section and charge asymmetry for inclusive pp→W(μν) production with 8 TeV CMS data and CMS single muon trigger efficiency study

Ogul, Hasan 01 May 2016 (has links)
This dissertation presents muon charge asymmetry, fiducial differential cross section and CMS single muon trigger efficiency measurements as a function of muon pseudorapidity for inclusive W→μν events produced in proton-proton collisions at the LHC. The data were recorded by the CMS detector at a center-of-mass energy of 8 TeV and correspond to an integrated luminosity of 18.8 fb-1. Several comparisons are performed to cross-check the experimental results. Muon efficiency measurements are compared to estimated values from Monte Carlo simulations and reference values recommended by CMS physics object groups. The differential cross section and the charge asymmetry measurements are compared to theoretical predictions based on next-to-leading order and next-to-next-to-leading order QCD calculations with different PDF models. Inputs from the charge asymmetry and the differential cross section measurements for the determination of the next generation of PDF sets are expected to bring different predictions closer together and aid in reducing PDF uncertainties. The impact of the charge asymmetry on PDFs has been investigated by putting the asymmetry results into a QCD analysis at next-to-leading order and next-to-next-leading order with inclusive deep-inelastic scattering data from HERA. Significant improvement of the accuracy on the valence-quark distributions is observed. This measurement is recommended for more accurate constraints in future PDF determinations. More precise measurements of PDFs will improve LHC predictions.
45

Compton Scattering and Renormalization of Twist Four Operators

January 2016 (has links)
abstract: In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents. The second chapter is then devoted to a detailed phenomenological study of the Virtual Compton Scattering (VCS) process, where a more comprehensive parametrization is suggested. In the third chapter, the renormalization kernels that enters the QCD evolution equations at twist- 4 accuracy are computed in terms of Feynman diagrams in momentum space, which can be viewed as an extension of the work by Bukhvostov, Frolov, Lipatov, and Kuraev (BKLK). The results can be used for determining the QCD background interaction for future precision measurements. / Dissertation/Thesis / Doctoral Dissertation Physics 2016
46

Pionem indukovaný polarizovaný Drell-Yan proces v experimentu COMPASS / Pion-induced polarized Drell-Yan process at Compass

Pešek, Michael January 2020 (has links)
In this work we present the basic theoretical concepts of the description of the nucleon spin structure. The theoretical background of two processes of interest - Semi-inclusive DIS and Drell-Yan - in the terms of Transverse Momentum De- pendent Parton distribution Functions is presented. The COMPASS experiment and particularly its unique polarised target are described in detail. Several target related measurements are presented. The express analysis and detector efficien- cies analysis are presented as examples of important hardware related analysis. Finally two measurements of Transverse Spin Asymmetries are presented. The first measurement is the measurement of the Transverse Spin Asymmetries in J/ψ production in the Semi-inclusive DIS on polarised protons. The second mea- surement is the measurement of Transverse Spin Asymmetries in J/ψ in the π− p polarised Drell-Yan data. 1
47

Probing the proton structure through deep virtual Compton scattering at COMPASS, CERN / Etude de la structure interne du proton par diffusion Compton virtuelle à COMPASS, CERN

Vidon, Antoine 01 October 2019 (has links)
La diffusion Compton virtuelle (DVCS) est un processus idéal pour étudier la structure interne du proton. Cette réaction exclusive permet d’accéder aux distributions de partons généralisées (GPDs) qui encodent les corrélations entre impulsion longitudinale et position transverse des partons à l’intérieur du proton. Le DVCS consiste à sonder le proton au moyen d’un photon virtuel de grande virtualité pour produire dans l’état final un unique photon réel de grande énergie tout en laissant le proton intact.A COMPASS au CERN, où deux années de données ont été collectées en 2016 et 2017 afin de mesurer la section efficace du processus DVCS, le photon virtuel est issu de la diffusion d’un faisceau de μ⁺ ou de μ⁻ polarisé de 160 GeV sur une cible d’hydrogène liquide. Toutes les particules de la réaction sont détectées dans l’expérience : le muon incident est détecté dans le télescope du faisceau, le muon diffracté et le photon réel sont détectés à l’avant dans le spectromètre et les trois calorimètres tandis que le proton de recul est détecté dans un détecteur de temps de vol placé autour de la cible.Je présente dans cette thèse l’état de l’analyse du processus DVCS sur les données collectées à COMPASS en 2016. Après un rappel du contexte théorique et expérimental, je décris l’expérience COMPASS. Je détaille ensuite mon travail de calibration du détecteur de proton de recul et de détermination de la position exacte de la cible de 2 cm de diamètre et 2.5 m de longueur. J’étudie dans la partie suivante la sélection de différents canaux de physique permettant de contrôler de manière systématique la qualité des détecteurs : la diffusion profondément inélastique (DIS) qui implique le télescope du faisceau et le spectromètre, la production exclusive de ρ⁰ qui inclut aussi le détecteur de temps de vol ; puis je présente la première analyse de la production exclusive de photons uniques qui implique en plus les trois calorimètres. Dans une dernière partie j’évoque les étapes nécessaires à la détermination de la section efficace du DVCS à partir de cette sélection, et je présente les premiers résultats issus de la simulation associée. / Virtual Compton Scattering (DVCS) is an ideal process to study the internal structure of proton. This exclusive reaction provides access to generalised parton distributions (GPDs), which encode the correlations between longitudinal momentum and transverse position of partons inside the proton. DVCS consists in probing a proton with a virtual photon of high virtuality, in order to produce a single high energy real photon while leaving the proton intact in the final state.At COMPASS at CERN, where two years of data were collected in 2016 and 2017 to measure the DVCS cross section, the virtual photon is produced by scattering of a 160 GeV polarised μ⁺ or μ⁻ beam on a liquid hydrogen target. All particles are detected in the experiment: the incident muon is detected in the beam telescope, the diffracted muon and the real photon are detected in the forward spectrometer and the three calorimeters, while the recoil proton is detected in a time-of-flight detector positioned around the target.In this thesis I present the state of the analysis of the DVCS process on the data collected at COMPASS in 2016. After a reminder of the theoretical and experimental context, I describe the COMPASS experiment. I then detail my work on calibrating the recoil proton detector and determining the the exact position of the 2 cm diameter and 2.5 m long target. In the next section, I study the selection of different physics channels used to systematically control detector quality: Deep Inelastic Scattering (DIS) which involves the beam-telescope and spectrometer, exclusive ρ⁰ production which requires the addition of the time-of-flight detector and I follow with the first analysis of the exclusive single photon production which depends as well on the calorimetres quality. In a last part, I discuss the necessary steps needed to extract the DVCS cross-section out of this event selection, and present the first results associated to the Monte-Carlo simulation.
48

Structure of the virtual photon at HERA

Macdonald, Neil Scott January 1999 (has links)
No description available.
49

Hard scattering cross sections and parton distribution functions at the LHC

Kovačíková, Petra 19 August 2013 (has links)
Über einen Mellinraumzugang werden Methoden zur Auswertung von Wirkunsquerschnitten für verschiedene Prozesse mit Hadronen im Anfangszustand entwickelt. Die Arbeit geschieht im Hinblick auf drei Prozesse, für die die analyischen Ergebnisse für perturbative QCD Korrekturen zu “next-to-next-to-leading order” bekannt sind; diese sind: die Produktion der Vektorbosonen Z0 und W± über einen Drell-Yan-Prozess in der “narrow width”-Näherung, die Produktion eines Standardmodell-Higgs-Bosons über die Fusion zweier Gluonen im Grenzfall schwerer Top-Quark-Massen und die tiefinelastische Lepton-Hadron-Streuung über neutrale und geladene Ströme. Die Implementierung der Mellinraumtechniken erfolgt in dem c++ Paket sbp. Das Programm ermöglicht auf elegante Weise eine schnelle und präzise Auswertung von inklusiven Wirkungsquerschnitten. Wir vergleichen sbp mit den herkömmlichen Impulsraumtechniken, und präsentieren Studien der asymptotischen Konvergenz den perturbativen Reihen und von Skalenabhängigkeiten. Als Anwendung untersuchen wir welchen Einfluss die Behandlung der Faktorisierungs- und Renormierungsskala auf den Wirkungsquerschnitt hat. / In this thesis we will explore a Mellin space approach to the evaluation of precision cross-sections at hadron colliders. We consider three processes with known analytic results for perturbative QCD corrections up to the next-to-next-to-leading order, namely: the production of vector bosons Z0, W± via the Drell-Yan mechanism in the narrow width approximation; the production of the standard model Higgs boson via gluon-gluon fusion using the large top quark mass limit and the neutral and charged current deep inelastic lepton-hadron scattering. We develop a c++ package sbp that implements the Mellin space technique. The resulting program provides an elegant, fast and accurate solution for the evaluation of inclusive cross sections. We compare our program with available results that use standard momentum space techniques. We present studies of asymptotic convergence and scale dependence of the perturbative series. We use the package to study different treatments of factorisation and renormalisation scales in cross sections.
50

Investigating new lattice approaches to the momentum and spin structure of the nucleon

Wiese, Christian 03 June 2016 (has links)
Diese Arbeit beschäftigt sich mit der Berechnung von für die Struktur des Nukleons relevanten Observablen, die experimentell durch inklusive und semi-inklusive Streuexperimente bestimmt werden können. Es werden zwei Pilotstudien erörtert, welche die Spin- und Impulsstruktur des Nukleons mithilfe von Gitter-QCD untersuchen. Hierfür wird der Twisted-Mass-Formalismus mit dynamischen Fermionen verwendet, um sicherzustellen, dass die untersuchten Größen einen verbesserten Kontinuumslimes aufweisen. Der erste Teil dieser Arbeit untersucht die Umsetzbarkeit einer Rechnung, die sich mit dem durchschnittlichen Impulsanteil der Gluonen im Nukleon auseinandersetzt. Diese Größe wurde bisher kaum im Rahmen der Gitter-QCD behandelt. In diesem Zusammenhang werden zwei verschiedene Gittermethoden untersucht: das Feynman-Hellman-Theorem, sowie die direkte Berechnung der relevanten Formfaktoren. Mithilfe der zweiten Methode und mehreren Iterationen des Schmierens der Eichlinks ist es möglich, statistisch aussagekräftige Resultate zu erhalten. Die zweite Studie beschäftigt sich mit der direkten Berechnung der vollständigen Impuls- und Spinverteilung von Quarks und Antiquarks im Nukleon. Hierfür wird untersucht, ob eine kürzlich publizierte Methode praktikabel ist, nach der eine räumliche Quasiverteilung zu berechnen und aus dieser die physikalische Verteilung abzuleiten ist. In diesem Zusammenhang wird der Einfluß des Schmierens der Eichlinks und unterschiedlicher Impulsboosts des Nukleons erprobt. Die anschließend berechneten Isovektor-Quarkverteilungen (unpolarisiert und polarisiert) weisen eine gute qualitative Übereinstimmung mit Verteilungen auf, die mithilfe von phänomenologischen Analysen bestimmt wurden. Zentrale Erkenntnis dieser Arbeit ist der Nachweis, dass es auf dem Gitter prinzipiell möglich ist, beide Observablen zu berechnen. Trotzdem muss noch erheblich mehr Arbeit aufgewendet werden, um verlässliche Resultate für diese Größen zu erhalten. / This thesis deals with the theoretical computation of nucleon structure observables as they can be experimentally obtained from inclusive and semi-inclusive scattering experiments. I present two exploratory studies on spin and momentum structure observables of the nucleon in the framework of lattice QCD. Throughout this work, I use the twisted mass formalism with dynamical fermions at maximal twist, which ensures an improved continuum limit scaling for the relevant quantities. In the first part, I investigate the feasibility of a lattice calculation of the gluons’ average momentum fraction in the nucleon, a quantity that is rarely studied in lattice QCD. For this purpose, I study two different methods, namely the Feynman-Hellman theorem and the direct computation of the relevant form factor. Applying the latter method and combining it with several steps of stout gauge link smearing, I obtain a statistically significant results for the gluon content. The second study is concerned with the direct computation of the full momentum and spin distribution of quarks and antiquarks within the nucleon. I investigate the feasibility of a recently published approach proposing the computation of a purely spatial quasi-distribution that can be related to the physical distribution. I test the influence of gauge link smearing and different nucleon momentum boosts on the lattice data. Ultimately, I obtain iso-vector quark distributions for the unpolarized and polarize case that featuring a decent qualitative agreement to quark distributions acquired from phenomenological fits. As a key result of this work, I demonstrate that the demanding calculation of gluon content and the novel approach of computing quark distributions directly within lattice QCD are feasible in principle, although significantly more effort has to be invested into obtaining accurate results with reliable uncertainties.

Page generated in 0.0696 seconds