• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 30
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DNA výpočty a jejich aplikace / DNA Computing and Applications

Fiala, Jan January 2014 (has links)
This thesis focuses on the design and implementation of an application involving the principles of DNA computing simulation for solving some selected problems. DNA computing represents an unconventional computing paradigm that is totally different from the concept of electronic computers. The main idea of DNA computing is to interpret the DNA as a medium for performing computation. Despite the fact, that DNA reactions are slower than operations performed on computers, they may provide some promising features in the future. The DNA operations are based on two important aspects: massive parallelism and principle of complementarity. There are many important problems for which there is no algorithm that would be able to solve the problem in a polynomial time using conventional computers. Therefore, the solutions of such problems are searched by exploring the entire state space. In this case the massive parallelism of the DNA operations becomes very important in order to reduce the complexity of finding a solution.
22

Hra Sokoban a umělá inteligence / Sokoban game and artificial intelligence

Žlebek, Petr January 2021 (has links)
The thesis is focused on solving the Sokoban game using artificial intelligence algorithms. The first part of the thesis describes the Sokoban game, state space and selected state space search methods. In the second part selected methods were implemented and graphic user interface was created in the Python environment. Comparative experiments were executed in the final part.
23

An Analysis of Consequences of Land Evaluation and Path Optimization

Murekatete, Rachel Mundeli January 2018 (has links)
Planners who are involved in locational decision making often use raster-based geographic information systems (GIS) to quantify the value of land in terms of suitability or cost for a certain use. From a computational point of view, this process can be seen as a transformation of one or more sets of values associated with a grid of cells into another set of such values through a function reflecting one or more criteria. While it is generally anticipated that different transformations lead to different ‘best’ locations, little has been known on how such differences arise (or do not arise). Examples of such spatial decision problems can be easily found in the literature and many of them concern the selection of a set of cells (to which the land use under consideration is allocated) from a raster surface of suitability or cost depending on context. To facilitate GIS’s algorithmic approach, it is often assumed that the quality of the set of cells can be evaluated as a whole by the sum of their cell values. The validity of this assumption must be questioned, however, if those values are measured on a scale that does not permit arithmetic operations. Ordinal scale of measurement in Stevens’s typology is one such example. A question naturally arises: is there a more mathematically sound and consistent approach to evaluating the quality of a path when the quality of each cell of the given grid is measured on an ordinal scale? The thesis attempts to answer the questions highlighted above in the context of path planning through a series of computational experiments using a number of random landscape grids with a variety of spatial and non-spatial structures. In the first set of experiments, we generated least-cost paths on a number of cost grids transformed from the landscape grids using a variety of transformation parameters and analyzed the locations and (weighted) lengths of those paths. Results show that the same pair of terminal cells may well be connected by different least-cost paths on different cost grids though derived from the same landscape grid and that the variation among those paths is affected by how given values are distributed in the landscape grid as well as by how derived values are distributed in the cost grids. Most significantly, the variation tends to be smaller when the landscape grid contains more distinct patches of cells potentially attracting or distracting cost-saving passage or when the cost grid contains a smaller number of low-cost cells. The second set of experiments aims to compare two optimization models, minisum and minimax (or maximin) path models, which aggregate the values of the cells associated with a path using the sum function and the maximum (or minimum) function, respectively. Results suggest that the minisum path model is effective if the path search can be translated into the conventional least-cost path problem, which aims to find a path with the minimum cost-weighted length between two terminuses on a ratio-scaled raster cost surface, but the minimax (or maximin) path model is mathematically sounder if the cost values are measured on an ordinal scale and practically useful if the problem is concerned not with the minimization of cost but with the maximization of some desirable condition such as suitability. / Planerare som arbetar bland annat med att fatta beslut som hänsyftar till vissa lokaler använder ofta rasterbaserade geografiska informationssystem (GIS) för att sätta ett värde på marken med avseende på lämplighet eller kostnad för en viss användning. Ur en beräkningssynpunkt kan denna process ses som en transformation av en eller flera uppsättningar värden associerade med ett rutnät av celler till en annan uppsättning sådana värden genom en funktion som återspeglar ett eller flera kriterier. Medan det generellt förväntas att olika omvandlingar leder till olika "bästa" platser, har lite varit känt om hur sådana skillnader uppstår (eller inte uppstår). Exempel på sådana rumsliga beslutsproblem kan lätt hittas i litteraturen och många av dem handlar om valet av en uppsättning celler (som markanvändningen övervägs tilldelas) från en rasteryta av lämplighet eller kostnad beroende på kontext. För att underlätta GISs algoritmiska tillvägagångssätt antas det ofta att kvaliteten på uppsättningen av celler kan utvärderas som helhet genom summan av deras cellvärden. Giltigheten av detta antagande måste emellertid ifrågasättas om dessa värden mäts på en skala som inte tillåter aritmetiska transformationer. Användning av ordinal skala enligt Stevens typologi är ett exempel av detta. En fråga uppstår naturligt: Finns det ett mer matematiskt sunt och konsekvent tillvägagångssätt för att utvärdera kvaliteten på en rutt när kvaliteten på varje cell i det givna rutnätet mäts med ordinalskala? Avhandlingen försöker svara på ovanstående frågor i samband med ruttplanering genom en serie beräkningsexperiment med hjälp av ett antal slumpmässigt genererade landskapsnät med en rad olika rumsliga och icke-rumsliga strukturer. I den första uppsättningen experiment genererade vi minsta-kostnad rutter på ett antal kostnadsnät som transformerats från landskapsnätverket med hjälp av en mängd olika transformationsparametrar, och analyserade lägen och de (viktade) längderna för dessa rutter. Resultaten visar att samma par ändpunkter mycket väl kan vara sammanbundna med olika minsta-kostnad banor på olika kostnadsraster härledda från samma landskapsraster, och att variationen mellan dessa banor påverkas av hur givna värden fördelas i landskapsrastret såväl som av hur härledda värden fördelas i kostnadsrastret. Mest signifikant är att variationen tenderar att vara mindre när landskapsrastret innehåller mer distinkta grupper av celler som potentiellt lockar eller distraherar kostnadsbesparande passage, eller när kostnadsrastret innehåller ett mindre antal låg-kostnad celler. Den andra uppsättningen experiment syftar till att jämföra två optimeringsmodeller, minisum och minimax (eller maximin) sökmodeller, vilka sammanställer värdena för cellerna som är associerade med en sökväg med summanfunktionen respektive maximum (eller minimum) funktionen. Resultaten tyder på att minisumbanemodellen är effektiv om sökningen av sökvägen kan översättas till det konventionella minsta kostnadsproblemet, vilket syftar till att hitta en väg med den minsta kostnadsvägda längden mellan två terminaler på en ratio-skalad rasterkostyta, men minimax (eller maximin) banmodellen är matematiskt sundare om kostnadsvärdena mäts i ordinär skala och praktiskt användbar om problemet inte bara avser minimering av kostnad men samtidigt maximering av någon önskvärd egenskap såsom lämplighet. / <p>QC 20181002</p>
24

Abordagem neuro-genética para mapeamento de problemas de conexão em otimização combinatória / Neurogenetic approach for mapping connection problems in combinatorial optimization

Pires, Matheus Giovanni 21 May 2009 (has links)
Devido a restrições de aplicabilidade presentes nos algoritmos para a solução de problemas de otimização combinatória, os sistemas baseados em redes neurais artificiais e algoritmos genéticos oferecem um método alternativo para solucionar tais problemas eficientemente. Os algoritmos genéticos devem a sua popularidade à possibilidade de percorrer espaços de busca não-lineares e extensos. Já as redes neurais artificiais possuem altas taxas de processamento por utilizarem um número elevado de elementos processadores simples com alta conectividade entre si. Complementarmente, redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver vários tipos de problemas de otimização, os quais consistem, geralmente, da otimização de uma função objetivo que pode estar sujeita ou não a um conjunto de restrições. Esta tese apresenta uma abordagem inovadora para resolver problemas de conexão em otimização combinatória utilizando uma arquitetura neuro-genética. Mais especificamente, uma rede neural de Hopfield modificada é associada a um algoritmo genético visando garantir a convergência da rede em direção aos pontos de equilíbrio factíveis que representam as soluções para os problemas de otimização combinatória. / Due to applicability constraints involved with the algorithms for solving combinatorial optimization problems, systems based on artificial neural networks and genetic algorithms are alternative methods for solving these problems in an efficient way. The genetic algorithms must its popularity to make possible cover nonlinear and extensive search spaces. On the other hand, artificial neural networks have high processing rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Additionally, neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems, which refer to optimization of an objective function that can be subject to constraints. This thesis presents a novel approach for solving connection problems in combinatorial optimization using a neurogenetic approach. More specifically, a modified Hopfield neural network is associated with a genetic algorithm in order to guarantee the convergence of the network to the equilibrium points, which represent feasible solutions for the combinatorial optimization problems.
25

Determinação de caminhos mínimos em aplicações de transporte público: um estudo de caso para a cidade de Porto Alegre

Bastos, Rodrigo 27 September 2013 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-07-21T22:37:51Z No. of bitstreams: 1 63c.pdf: 2699232 bytes, checksum: 1ae2013ef31101508f9fef3997d71790 (MD5) / Made available in DSpace on 2015-07-21T22:37:51Z (GMT). No. of bitstreams: 1 63c.pdf: 2699232 bytes, checksum: 1ae2013ef31101508f9fef3997d71790 (MD5) Previous issue date: 2013 / SIMTUR - Sistema Inteligente De Monitoramento de Tráfego Urbano / O crescente aumento do uso de automóveis e de motocicletas tem provocado uma contínua degradação no trânsito urbano das grandes metrópoles. Este cenário é agravado pelas deficiências nos atuais sistemas de transporte público, geradas, em parte, pela falta de informação ao usuário. O presente trabalho apresenta um modelo computacional para um sistema de informação ao usuário de transporte público. Ao contrário de outros trabalhos baseados no algoritmo clássico Dijkstra, a abordagem apresentada faz uso do algoritmo A* para resolução do problema de caminhos mínimos, presente neste contexto, a fim de reduzir o tempo de resposta de maneira que o modelo possa ser utilizado em um sistema real de informação ao usuário. O modelo proposto considera múltiplos critérios de decisão, como a distância total percorrida e o número de transbordos. Um estudo de caso foi realizado utilizando dados reais do transporte público da cidade Porto Alegre com o objetivo de avaliar o modelo computacional desenvolvido. Os resultados gerados foram comparados com aqueles obtidos através do emprego do algoritmo Dijkstra e indicam que a combinação do algoritmo A* com técnicas de aceleração permite reduzir, significativamente, a complexidade de espaço, o tempo de processamento e o número de transbordos. / The increasing use of automobiles and motorcycles has caused a continuous degradation in the traffic of large cities. This scenario gets worse due to shortcomings in the current public transportation, which is entailed, in a certain way, by the lack of information provided to the user. This study shows a computing model for a public transportation user information system. Unlike other studies based on the classical Dijkstra’s algorithm, the approach makes use of the algorithm A* to solve a shortest path problem to reduce the response time so that the model can be used in an real-time web information system. The proposed model takes into account multiple criteria of decision, such as total distance traveled and number of transfers and it was evaluated with data from Porto Alegre’s public transportation. The results were compared to those ones obtained by the use of Dijkstra’s algorithm and indicate that the combination of algorithm A* with acceleration techniques allows reducing significantly the space complexity, processing time and the number of transfers.
26

Abordagem neuro-genética para mapeamento de problemas de conexão em otimização combinatória / Neurogenetic approach for mapping connection problems in combinatorial optimization

Matheus Giovanni Pires 21 May 2009 (has links)
Devido a restrições de aplicabilidade presentes nos algoritmos para a solução de problemas de otimização combinatória, os sistemas baseados em redes neurais artificiais e algoritmos genéticos oferecem um método alternativo para solucionar tais problemas eficientemente. Os algoritmos genéticos devem a sua popularidade à possibilidade de percorrer espaços de busca não-lineares e extensos. Já as redes neurais artificiais possuem altas taxas de processamento por utilizarem um número elevado de elementos processadores simples com alta conectividade entre si. Complementarmente, redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver vários tipos de problemas de otimização, os quais consistem, geralmente, da otimização de uma função objetivo que pode estar sujeita ou não a um conjunto de restrições. Esta tese apresenta uma abordagem inovadora para resolver problemas de conexão em otimização combinatória utilizando uma arquitetura neuro-genética. Mais especificamente, uma rede neural de Hopfield modificada é associada a um algoritmo genético visando garantir a convergência da rede em direção aos pontos de equilíbrio factíveis que representam as soluções para os problemas de otimização combinatória. / Due to applicability constraints involved with the algorithms for solving combinatorial optimization problems, systems based on artificial neural networks and genetic algorithms are alternative methods for solving these problems in an efficient way. The genetic algorithms must its popularity to make possible cover nonlinear and extensive search spaces. On the other hand, artificial neural networks have high processing rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Additionally, neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems, which refer to optimization of an objective function that can be subject to constraints. This thesis presents a novel approach for solving connection problems in combinatorial optimization using a neurogenetic approach. More specifically, a modified Hopfield neural network is associated with a genetic algorithm in order to guarantee the convergence of the network to the equilibrium points, which represent feasible solutions for the combinatorial optimization problems.
27

Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

January 2018 (has links)
abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018
28

Uma col?nia de formigas para o caminho mais curto multiobjetivo

Bezerra, Leonardo Cesar Teon?cio 07 February 2011 (has links)
Made available in DSpace on 2015-03-03T15:47:46Z (GMT). No. of bitstreams: 1 LeonardoCTB_DISSERT.pdf: 2119704 bytes, checksum: 5bdd21de8bfa668bba821593cdd5289f (MD5) Previous issue date: 2011-02-07 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods / Problemas de otimiza??o combinat?ria multiobjetivo apresentam caracter?sticas peculiares que exigem que t?cnicas de otimiza??o se adaptem a esse contexto. Como muitos desses problemas s?o NP-?rduos, o uso de metaheur?sticas tem crescido nos ?ltimos anos. Particularmente, muitas abordagens que utilizam a Otimiza??o por Col?nias de Formigas t?m sido propostas. Neste trabalho, prop?e-se um algoritmo baseado em col?nias de formigas para o Problema do Caminho mais Curto Multiobjetivo, e compara-se o algoritmo proposto com dois otimizadores encontrados na literatura. Um conjunto de 18 inst?ncias oriundas de dois tipos de grafos ? utilizado, al?m de uma metodologia espec?fica para a avalia??o de otimizadores multiobjetivo. Os experimentos iniciais mostram que o algoritmo proposto consegue gerar conjuntos de aproxima??o melhores que os demais otimizadores para todas as inst?ncias. Na segunda parte do trabalho, uma an?lise experimental de diferentes abordagens publicadas para col?nias de formigas multiobjetivo ? realizada, usando as mesmas inst?ncias. Os experimentos mostram que cada tipo de inst?ncia privilegia uma abordagem algor?tmica diferente. Uma nova met?fora para o desenvolvimento deste tipo de metaheur?stica ? ent?o proposta. Geralmente, formigas possuem caracter?sticas comuns e poucos artigos abordam o uso de m?ltiplas esp?cies. Neste trabalho, uma abordagem com m?ltiplas esp?cies competindo por fontes de comida ? proposta. Cada esp?cie possui sua pr?pria estrat?gia de busca e diferentes esp?cies n?o tem acesso ? informa??o dada pelo ferom?nio das outras. Como na natureza, as popula??es de formigas bem sucedidas tem a chance de crescer, enquanto as demais se reduzem. A abordagem apresentada aqui mostra-se capaz de herdar o comportamento de estrat?gias bem-sucedidas em diferentes tipos de inst?ncias. Resultados de experimentos computacionais s?o relatados e mostram que a abordagem proposta produz conjuntos de aproxima??o significativamente melhores que os outros m?todos
29

Robustness and preferences in combinatorial optimization

Hites, Romina 15 December 2005 (has links)
In this thesis, we study robust combinatorial problems with interval data. We introduce several new measures of robustness in response to the drawbacks of existing measures of robustness. The idea of these new measures is to ensure that the solutions are satisfactory for the decision maker in all scenarios, including the worst case scenario. Therefore, we have introduced a threshold over the worst case costs, in which above this threshold, solutions are no longer satisfactory for the decision maker. It is, however, important to consider other criteria than just the worst case.<p>Therefore, in each of these new measures, a second criteria is used to evaluate the performance of the solution in other scenarios such as the best case one. <p><p>We also study the robust deviation p-elements problem. In fact, we study when this solution is equal to the optimal solution in the scenario where the cost of each element is the midpoint of its corresponding interval. <p><p>Then, we finally formulate the robust combinatorial problem with interval data as a bicriteria problem. We also integrate the decision maker's preferences over certain types of solutions into the model. We propose a method that uses these preferences to find the set of solutions that are never preferred by any other solution. We call this set the final set. <p><p>We study the properties of the final sets from a coherence point of view and from a robust point of view. From a coherence point of view, we study necessary and sufficient conditions for the final set to be monotonic, for the corresponding preferences to be without cycles, and for the set to be stable.<p>Those that do not satisfy these properties are eliminated since we believe these properties to be essential. We also study other properties such as the transitivity of the preference and indifference relations and more. We note that many of our final sets are included in one another and some are even intersections of other final sets. From a robust point of view, we compare our final sets with different measures of robustness and with the first- and second-degree stochastic dominance. We show which sets contain all of these solutions and which only contain these types of solutions. Therefore, when the decision maker chooses his preferences to find the final set, he knows what types of solutions may or may not be in the set.<p><p>Lastly, we implement this method and apply it to the Robust Shortest Path Problem. We look at how this method performs using different types of randomly generated instances. <p> / Doctorat en sciences, Orientation recherche opérationnelle / info:eu-repo/semantics/nonPublished
30

Système de gestion du stationnement dans un environnement dynamique et multi-objectifs / Parking management system in a dynamic and multi-objective environment

Ratli, Mustapha 12 December 2014 (has links)
Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique. Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA). / The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous. The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. In order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA).

Page generated in 0.0528 seconds