• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 394
  • 75
  • 49
  • 39
  • 34
  • 29
  • 19
  • 12
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 901
  • 140
  • 139
  • 126
  • 79
  • 75
  • 67
  • 64
  • 63
  • 61
  • 59
  • 58
  • 56
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A Techno-Economic Analysis of Employing Lithium Iron Phosphate Battery Energy Storage System for Peak Demand Reduction of Industrial Manufacturing System

Wong, Alexander T. 21 June 2021 (has links)
No description available.
162

Supply Current Modeling and Analysis of Deep Sub-Micron Cmos Circuits

Ahmad, Tariq B 01 January 2008 (has links) (PDF)
Continued technology scaling has introduced many new challenges in VLSI design. Instantaneous switching of the gates yields high current flow through them that causes large voltage drop at the supply lines. Such high instantaneous currents and voltage drop cause reliability and performance degradation. Reliability is an issue as high magnitude of current can cause electromigration, whereas, voltage drop can slow down the circuit performance. Therefore, designing power supply lines emphasizes the need of computing maximum current through them. However, the development of digital integrated circuits in short design cycle requires accurate and fast timing and power simulation. Unfortunately, simulators that employ device modeling methods, such as HSPICE are prohibitively slow for large designs. Therefore, methods which can produce good maximum current estimates in short times are critical. In this work a compact model has been developed for maximum current estimation that speeds up the computation by orders of magnitude over the commercial tools.
163

Turning Oil Into Water : Water security in the Middle East and North Africa

Salberg, Frida January 2023 (has links)
This study examines the relationship between oil supply and water security in the Middle East and North Africa. The aim is to see if countries without oil have a harder time mitigating water scarcity, as well as if countries with oil can be expected to become more vulnerable when oil becomes scarcer. This is important considering water security has impacts on many issues, such as political stability and food security. The study looks at panel data for 4 years between 1997- 2012 in a regression with Year Fixed Effects and finds that there is a positive correlation between oil supply and water supply. The study then uses this result to look qualitatively at three countries (Jordan, Bahrain, Saudi Arabia) that are diverse with respect to oil supply, and the results show that oil mainly impacts water security through desalination capabilities, due to oil fueling these facilities. The results also show that desalination may have led to excessive use in some countries, and that oil has allowed a higher consumption of water than is sustainable in the long run. This is significant because it has implications on future water security in the region, and therefore possibly on issues such as political stability.
164

An Intelligent Lead Acid Battery Management System for Solar and Off-Peak Energy Storage

Ming-Chieh, Chen January 2012 (has links)
No description available.
165

OBJECTIFICATION THEORY: EXAMINING THE RELATION BETWEEN SELF-OBJECTIFICATION AND FLOW FOR COLLEGE-AGED WOMEN ATHLETES

Dorland, Jeanne Marie January 2006 (has links)
No description available.
166

Molecular Cooperativity in the Dynamics of Glass-Forming Materials

Hong, Liang 24 May 2010 (has links)
No description available.
167

Mafic Alkaline Magmatism in the East Tintic Mountains, West-Central Utah: Implications for a Late Oligocene Transition from Subduction to Extension

Allen, Tara Laine 08 March 2012 (has links) (PDF)
Voluminous Eocene to Oligocene intermediate to silicic volcanic rocks related to subduction erupted throughout the Great Basin and were supplanted by bimodal eruptions of basalt and rhyolite related to extension in the Miocene. Locally, in the northern East Tintic Mountains of central Utah, this important transition is marked by a distinctive package of mafic alkaline magmas that reveal important details about the nature of this fundamental change. A late Oligocene anorthoclase-bearing shoshonite lava in the Boulter Peak quadrangle contains megacrysts of anorthoclase, with phenocrysts of olivine, clinopyroxene, magnesiohastingsite, magnetite, and apatite. The anorthoclase grains occur as glomerocrysts with irregular, resorbed edges, indicating they are not in equilibrium with the mafic phenocrysts in the shoshonite. They are interpreted to be xenocrysts incorporated into an ascending mafic magma that came into contact with a partially crystallized syenite. The mafic magma involved was probably derived by partial melting of the lithospheric mantle based on its high Mg/Fe ratios, magnesian phenocrysts, high water content, and high ratios of lithophile to high field strength elements. The syenite body likely crystallized from a highly differentiated melt. The 40Ar/39Ar age of the shoshonite is 25.35±0.04 Ma, and appears to represent the transition from subduction before the onset of extension (Christiansen et al., 2007). Other Oligocene mafic units in the area may represent different variations of the mafic alkaline endmember for the mixing process. The Gardison Ridge dike, a potassic alkaline basalt with an 40Ar/39Ar age of 26.3±0.3 Ma, contains olivine and clinopyroxene phenocrysts that are compositionally very similar to those found in the shoshonite. Other mafic dikes have even higher alkalis. All of these dikes have similar trace element patterns, with negative Nb and positive Pb anomalies, and high Ba and K concentrations. The minette of Black Rock Canyon (28.45±0.13 Ma) also contains high alkalis, particularly K, and its trace element pattern shows positive Ba and negative Nb anomalies. The clinopyroxene phenocrysts in the minette are also very similar to those found in the other alkaline rocks. The high water contents of these units are evidenced by amphibole in the shoshonite, phlogopite in the minette, and the lack of plagioclase phenocrysts in the basaltic dikes. The ages, mineral assemblages, and chemical compositions show that these late Oligocene alkaline magmas formed after a shallowly subducting oceanic slab peeled away from the overlying continental lithosphere and rolled back. Hot asthenosphere flowed in to replace the subducting plate and caused partial melting of the variably metasomatized lithospheric mantle. These alkaline magmas include the shoshonite, mafic alkaline dikes, and minette of Boulter Peak; they mark the transition from older subduction-related magmatism to Miocene magmatism caused by lithospheric extension.
168

Lower Extremity Joint Moments During the Active Peak Vertical Ground Reaction Force in Three Different Running Conditions

Standifird, Tyler W. 07 March 2012 (has links) (PDF)
The purpose of this study was to compare joint moments during the active peak vertical ground reaction force (PVGRF) when running in three conditions. Twenty-five subjects, sixteen male and nine female, were measured using 3-dimensional motion analysis while running barefoot, in Vibram FiveFingers® (VF®) minimalist running shoes and in traditional running shoes at a 7-minute-mile pace (3.84 m/s). Joint moment differences were calculated and compared using a mixed model analysis of variance. Results showed the VF® was effective at mimicking both the kinetic and kinematic attributes of barefoot running. The only significant difference found when comparing barefoot and VF® running was in the ankle angle (p < .005). All other variables in the lower extremity were the same for the two conditions. Though the subjects in our study had no previous experience with VF® (or barefoot) running they were able to closely mimic barefoot running upon initial running trials. Joint moments at the ankle were higher for barefoot and VF® running (p < .001) when compared with shod running. This may potentially lead to a greater risk of injury at the ankle joint when running barefoot or in VF®. The hip joint moments were only different when comparing the barefoot condition to the shod condition (p=.002), with the barefoot condition higher than shod running. The knee joint moment was smaller during the VF® and barefoot conditions when compared with shod running (p < .001) and may lead to a decrease in injury rates at the knee. Though a reduction in moments of the lower extremity may lead to a decrease of injury at the corresponding joint, it is important to consider the adaptations that take place as a result of varying stresses. According to Wolff's law, bone and surrounding tissue will adapt to the loads it is placed under. Taking this into consideration, it is important to remember that lower moments may lead to weaker bones and surrounding tissues and without compensation for these reduced loads, injury rates may remain the same over time.
169

QEEG Correlates of Cognitive Deficits in Multiple Sclerosis During Targeted Cognitive Tasks

Frost, Robert B. 04 June 2013 (has links) (PDF)
Multiple sclerosis (MS) is the most common neurological disorder of young adulthood and is often associated with cognitive impairment and emotional dysfunction. Due to the nature of the disease, the cognitive deficits in MS are often variable in their presentation, and consist of deficits in processing speed, attention, working memory, and executive functioning. The purpose of the present study was to explore common methods of documenting MS-related cognitive deficits, to elucidate the relationship between the cognitive deficits seen in MS and physiological markers of cognitive functioning (i.e., quantitative EEG), and to analyze the relationship between cognitive deficits and mood dysfunction in MS. There were 26 participants diagnosed with remitting-relapsing multiple sclerosis and 18 age, sex, and education matched controls. Results of cognitive testing indicated deficits in gross cognitive functioning, language, attention, processing speed, working memory, and executive functioning. A MANOVA encompassing group, task (PASAT and SPT) and load (light and heavy) showed significant group and load effects, but no main effect of task. The MS group performed worse than the controls and both groups performed better on the light load than the heavy load. Post hoc analysis indicated that performance on the PASAT 3 second trial was worse than on the PASAT 2 second trail compared to controls. Given that the PASAT 3 trial is theoretically easier than the PASAT 2 trial and that the PASAT 3 was administered first, the above results likely reflect learning effects. A Repeated Measures ANCOVA encompassing EEG and cognitive data (PASAT and SPT) indicated group-level differences on task performance, and suggested that at rest mean peak alpha frequency (PAF) is associated with performance on the PASAT, but not the SPT. EEG coherence during cognitive tasks was reduced between short-range connections in the theta, alpha, and beta frequency bins and enhanced in a limited number of long-range, anterior to posterior connections in the theta frequency bin in the MS group compared to controls. Finally, the MS participants had significantly more symptoms of depression and anxiety compared to normal controls. A hierarchical multiple regression analysis suggested that cognitive functioning is deleteriously affected by depression and anxiety. Overall, the results of this study substantiate the feasibility of utilizing QEEG as a physiological indicator of cognitive and cortical dysfunction in MS and show the importance of recognizing depression and anxiety and their contributions to cognitive deficits in individuals with MS.
170

Raman Spectroscopy Of Glasseswith High And Broad Raman Gain In The Boson Peak Region

Guo, Yu 01 January 2006 (has links)
This thesis investigates Raman spectra of novel glasses and their correlation with structure for Raman gain applications. Raman gain for all-optical amplification by fibers depends significantly on the cross section for spontaneous Raman scattering allowing to compare signal strength and spectral coverage. We also investigate the relationship between glass structure and the Boson peak (enhancement of the low-frequency vibrational density of states) and report new inelastic neutron scattering spectra for niobium-phosphate glasses. Polarization resolved Raman spectra of glasses based on tellurite and phosphate formers have been measured from 6 – 1500 cm-1 using an excitation wavelength of 514 nm. The Tellurite glasses exhibit Raman Spectra at least 10 times more intense, are more spectrally uniform and possess spectral bandwidths more than a factor of two wider than fused silica. Assignments of the vibrational bands are presented and the compositional dependence of the spectra is discussed with respect to the molecular structure. Significantly high Boson peaks were found in the frequency range from 30-100 cm-1. The Raman gain curves were calculated from the polarized spontaneous Raman spectra. In particular, they show broad and flat band in the low frequency region (50-400 cm-1) suggesting that these glasses may be useful for Raman gain applications extending to very low frequencies. The inelastic neutron scattering spectra of the niobium-phosphate glasses display a pronounced low-frequency enhancement of the vibrational density of states. By averaging over the full accessible wavevector range we obtain an approximate spectral distribution of the vibrational modes. Through direct comparison with the Raman spectra we determine the Raman coupling function which shows a linear behavior near the Boson peak maximum. Possible mechanisms contributing to the low frequency Raman band such as disorder-induced irregular vibrational states are discussed.

Page generated in 0.0327 seconds