• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 2
  • Tagged with
  • 19
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Harnessing the immune response to optimise treatment strategies in chronic hepatitis B

Gill, Upkar S. January 2018 (has links)
Chronic Hepatitis B (CHB) related cirrhosis and hepatocellular carcinoma (HCC) account for more than 750,000 deaths per year. Current therapies for CHB are limited in achieving HBsAg decline/loss and thus there remains a pressing need for curative treatment strategies. Although, Pegylated Interferon-α (Peg-IFNα) may be used, the majority of patients progress to nucleos(t)ide analogue (NUC) therapy due to treatment failure. Peg-IFNα and NUCs used in isolation act differentially on the immune response; Peg-IFNα induces NK cell activation and NUC therapy may partially restore T cell function. NK cells are important antiviral effectors, highly enriched in the liver, with the potential to regulate immunopathogenesis in persistent viral infections. Here we examined the NK cell pool in HBeAg-positive CHB patients treated with Peg-IFNα and whether changes in the NK cell repertoire are induced when patients are 'primed' with Peg-IFNα and importantly, whether these changes are sustained or further modulated long-term after switching to sequential NUC therapy. The cumulative expansion of CD56bright NK cells driven by 48-weeks of Peg-IFNα was maintained at higher than baseline levels throughout the subsequent 9 months of sequential NUCs. Peg- IFNα-expanded NK cells showed further augmentation in their expression of the activating NK cell receptors during sequential NUCs. The expansion in proliferating, functional NK cells and HBsAg reduction was greater and more pronounced following sequential NUCs than in patients treated with de novo NUCs. This highlights the potential benefit of Peg-IFNα- priming, providing mechanistic insights for the further optimisation of treatment strategies to achieve sustained responses. Sustained boosting of NK cells on sequential NUCs following Peg-IFNα-priming has not previously been described raising the potential of 'long-lived' NK cell populations in keeping with their emerging adaptive features. These findings provide a mechanistic and immunological rationale to explore combination/sequential treatment strategies for CHB, including on-treatment immune responses in the liver, whilst awaiting the emergence of new therapies in the field.
2

IGF-1 conjugated to a PEGylated-Fibrin hydrogel as a therapeutic modality for eccentric muscle damage in rats

Treff, Jessica Caitlin 23 October 2013 (has links)
We evaluated the efficacy of treating eccentric muscle damage with IGF-1 PEGylated to a fibrin biomatrix. With one injection, delivered one hour after the induction of eccentric muscle damage we saw an attenuation of force loss early in recovery, maintenance of muscle weight, and progression to the repair/regeneration of the damaged fibers at a greater speed and magnitude in the first week of recovery. As opposed to introducing an unbound bolus of IGF-1, we believe the ability of the PEGylated-fibrin to stabilize and sustain delivery of the molecule results in significantly better recovery. Coupling IGF-1, which has multiple beneficial effects in tissue repair, with this system of delivery provides a simple and easy to administer treatment for eccentric muscle damage. With this form of damage being the most prevalent of all skeletal muscle damage types, since it is underlies all muscle strain, a simple and effective treatment is important for increasing functional recovery after injury. / text
3

Skeletal muscle repair following Plantar nerve relocation on an extracellular matrix seeded with mesenchymal stem cells in PEGylated fibrin gel as a treatment model for volumetric muscle loss.

Da Costa, Adriana Jocelyn 30 September 2014 (has links)
The toll skeletal muscle injury, resulting in significant muscle mass loss, has on the patient reaches far more than physical and emotional, as the tolls are financial as well. Approximately more than 3 billion dollars is spent on the initial medical costs and on subsequent disability benefits, following a volumetric muscle loss. Skeletal muscle has a robust capacity for self-repair; this propensity for repair is hindered when skeletal muscle loss is larger than 20% of the total mass of the muscle. Previous work in our lab, has shown functional and morphological improvements following the cellular therapy, with mesenchymal stem cells (MSC), as well as with nerve relocation to the extracellular matrix (ECM). To further observe the regenerative properties of the above treatments, a defect weighing approximately 307 ± 3.7 mg wet weight and measuring approximately 1x 1cm² was removed from the lateral gastrocnemius (LGAS) of male Sprague Dawley rats. Additionally, the medial branch of the plantar nerve was then relocated and implanted to the middle of the ECM. Seven days post injury bone-marrow derived mesenchymal stem cells were injected directly into the implant using a PEGylated Fibrin hydrogel (PEG). Following 56 days of recovery, partial functional restoration was observed in the LGAS ECM seeded with MSC and implanted with the plantar nerve. The LGAS produced 86.3 ± 5.8% of the contralateral LGAS, a value that was significantly higher than ECM implantation alone (p <.05). The implanted ECM seeded with MSC and implanted with the plantar nerve showed significant increases in blood vessel density and myofiber content (p <.05). The data suggest that a volumetric injury can be repaired by neurotization of an implanted muscle-derived ECM seeded with MSCs. / text
4

The effect of PEG-insulin and insulin hexamer assembly on stability in solution and dry powders : hexamer assembly of PEGylated-insulin and insulin studied by multi-angle light scattering to rationally choose the pH and zinc content for analytical methods and formulations of dry powders

Bueche, Blaine January 2010 (has links)
The objective of this research is to further define the relationship between the charge state of insulin, and the self assembly properties of insulin and PEGylated insulin in solution. Polyethylene glycol (PEG) chains were covalently attached to insulin in order to evaluate their impact on insulin's systemic duration of action after pulmonary dosing. This thesis will focus on the assembly properties of the PEG-insulin and insulin, and also demonstrate how the charge state, which was modified by the covalent attachment of PEG, relates to different modes of behavior by anion and cation exchange chromatography. In addition, explain how modifying the assembly state extends to improving formulation properties of spray-dried insulin powders. This thesis is an investigation into the relationship of insulin's charge state controlled by pH and how the charge state affects the self assembly of insulin, especially when the zinc ion is removed. Ionic interaction is one of the major forces affecting insulin assembly. The theory that a change in the charge state of insulin could modulate the ionic interaction and reduce hexamer formation at alkaline conditions was investigated. Experiments were designed to measure the level of hexamer with light scattering, and the amount of hexamer was then correlated with the pH and zinc content of the solutions. The importance of the charge state of the monomer and its behavior extends to chromatography and purification modes as well. Specifically, the purification of various species of PEGylated insulin presents a challenge. By varying mobile phase pH which induces the charge to insulin, an ion exchange method demonstrated very high resolution and controllable interaction between the ion exchange media and the insulin derivatives. A highly accurate method for determining molecular weight and thus the average associated state of insulin in solution has been developed using the MALS (Multi-Angle Light Scattering). Insulin concentration, pH, and metal ion concentrations, were in pharmaceutically relevant ranges. The MALS method was developed to evaluate how the parameters above affect the self-assembly properties of insulin, and use the assembly properties to improve formulations of insulin or PEGylated insulin. To use the light scattering technique the dn/dc (change in refractive index with change in concentration) is required. During the method development, the dn/dc of insulin was measured at 690 nm, and a value of 0.185 mL/g based on theory was confirmed. A novel approach for preparing insulin powders with improved chemical stability, based on maintaining the dissociation of hexamers in solution during the spray drying process was developed. The mode presented here is to remove the zinc ions from solution, increase the pH from 6.6 to 7.8, and maintain a low concentration of insulin approximately 2 to 15 mg/mL. Each of these factors alone decreases the hexamer population in solution, but by combining all three factors, hexamers are driven to very low levels of equilibrium. The increased stability of the powders is predominately related to the decrease in covalent insulin dimer (CID). The data presented correlates a reduced hexamer population in the solution with lower levels of CID's in the dry powder compared to controls. The CID formation rate was reduced by 40% compared to a control.
5

The modification of insulin to enhance oral delivery systems

Kanzelberger, Melissa Ann 09 August 2012 (has links)
While a number of PEGylated proteins have been studied for injectable applications and reviewers have used this data to speculate possible oral delivery improvements, a detailed investigation of PEGylated insulin for oral delivery and the development of an optimized pH-sensitive carrier for PEGylated insulin conjugates had yet to be accomplished. In order to proceed with oral delivery study, improvements in yield, with respect to previous PEGylation methods were necessary to enable the completion of high throughput drug delivery studies. Subsequently, a reaction scheme for the covalent attachment of PEG to insulin using nitrophenyl carbonate-PEG was developed. It was demonstrated that this reaction occurred at a 1:1 ratio and was site specific at the B29Lys position. A P(MAA-g-EG) hydrogel carrier was developed to optimize loading and release behavior for PEGylated insulin. It was demonstrated that the density and length of polymer grafts affected both loading and release behavior of PEGylated insulin. The best performing grafted polymers had a 3:1 methacrylic acid: ethylene glycol (MAA:EG) ratio and achieved loading efficiencies from 96% to nearly 100%. With respect to release, polymer particles containing fewer, but longer grafts shown to release faster than polymers with shorter grafts with the same MAA:EG ratio. Finally, the effects of PEGylation on intestinal absorption was investigated using an intestinal epithelial model as well as a rat model. It was demonstrated that PEGylated insulin in the presence of P(MAA-g-EG) microparticles did not significantly alter the tight junctions over unmodified insulin. However, the conjugate permeabilities across the membrane were reduced. The pharmacological availability (PA) was then verified by injecting the insulin conjugates subcutaneously in fasted Sprague-Dawley rats. It was determined that PEG 1000 insulin (1KPI) had a PA roughly equivalent to insulin, while it was reduced by 59% for 2KPI and by 81% for 5KPI. The effectiveness of utilizing PEGylated insulin as an oral drug delivery candidate was evaluated with a closed loop intestinal study, in which PEGylated insulin or insulin in solution was delivered directly to the jejunum. It was shown that 1KPI and insulin performed identically; with a pharmacological availability of 0.56%. 2KPI, however improved the pharmacological availability of insulin by 2.8 times. These results demonstrate that PEGylation holds promise for improving the oral delivery of proteins. / text
6

Functional recovery of a volumetric skeletal muscle loss injury using mesenchymal stem cells in a PEGylated fibrin gel seeded on an extracellular matrix

Merscham, Melissa Marie 26 April 2013 (has links)
This study investigated the effect of bone marrow derived mesenchymal stem cells (MSCs) in a PEGylated fibrin gel (PEG) seeded into a decellularized extracellular matrix (ECM) on recovery of skeletal muscle following a volumetric muscle loss (VML) injury. Six to nine month old male Sprague-Dawley rats were used in this study. Approximately one-third of the skeletal muscle mass of the lateral gastrocnemius (LGAS) was removed from the LGAS, which was immediately replaced with an acellular ECM of the same dimensions. Seven days after injury, animals were injected with one of four solutions: saline (SAL), MSCs (MSC), PEGylated fibrin hydrogel (PEG), or MSCs in PEG (PEG+MSC). Maximal isometric tetanic tension (Po) of the LGAS was assessed fifty-six days after VML injury, followed by histological evaluation. VML injury resulted in a functional impairment of the LGAS capable of producing 76.1± 4.9% of the force generated in the non-injured contralateral LGAS. Tetanic tension of the PEG+MSC treated group was significantly higher compared to all other treatment groups (p < 0.05), although specific tension (N/cm2) in the PEG+MSC group (79.7±4.0%) was only significantly higher compared to SAL (58.2±3.0) and PEG (64.0±2.1%) treated groups (p < 0.05). However, LGAS mass was significantly higher in the PEG+MSC group compared to all other groups (p < 0.05). These findings suggest the combination of the PEG+MSC did not lead to a significant increase in muscle function compared to MSC treatment alone, and demonstrates the importance of MSCs in skeletal muscle regeneration in VML injury models. However, as evident by the significant increase in LGAS mass, PEG+MSC treatment may lead to histological differences not evaluated in this study. Gross morphology of the repaired gastrocnemius was indistinguishable from the contralateral control. / text
7

SDF-1/IGF-1 conjugated to a PEGylated fibrin matrix as a treatment for an ischemia reperfusion injury in skeletal muscle repair

Pham, Chantal Bich Phuong 26 April 2013 (has links)
Ischemia/reperfusion (I/R) injury causes extensive damage to skeletal muscle, often resulting in prolonged functional deficits. This current study determines the efficacy of controlled release of SDF-1α and IGF-1 by conjugation to biodegradable, polyethylene glycol, (PEG)ylated fibrin gel matrix in skeletal muscle repair of an I/R injury. Male Sprague-Dawley rats underwent a 2-hour tourniquet induced I/R injury on their hind limbs. Twenty-four hours post injury the following treatments were administered: PEGylated fibrin gel (PEG-Fib), SDF-1 conjugated PEGylated fibrin gel (PEG-Fib/SDF-1), or dual protein IGF-1 and SDF-1 conjugated PEGylated fibrin gel (PEG-Fibrin/SDF-1/IGF-1. Following 14 days after injury, functional and histological evaluations were performed. There was no significant difference in maximum tetanic force production recovery between PEG-Fib and PEG-Fib/SDF-1 groups. However, PEG-Fib/SDF-1/IGF-1 group resulted in significant improvement of force production relative to the other treatment groups. The same results were found for specific tension. Histological analysis revealed a greater distribution of small myofibers in the PEG-Fib/SDF-1 group than the PEG-Fib group, while the PEG-Fib/SDF-1/IGF-1 group had the smallest distribution of small fibers and similar to controls (uninjured). There were also a greater number of centrally located nuclei in the PEG-Fib/SDF-1 group than the PEG-Fib group, while the PEG-Fib/SDF-1/IGF-1 group had similar values to controls. Although these results confirm the protective role of exogenous IGF-1, SDF-1 did not have an effect on skeletal muscle repair. / text
8

Development of rifampicin loaded in surface-modified 4.0 G PAMAM dendrimer as a novel antituberculosis pulmonary drug delivery system

Ahmed, Rami M. Y. January 2020 (has links)
Philosophiae Doctor - PhD / Introduction: Tuberculosis (TB) is a serious bacterial infections caused by the Mycobacterium Tuberculosis (MTB) organism affecting mainly the lungs. Occasionally, MTB bacilli may be transported out of the pulmonary region and infect peripheral organs causing extra-pulmonary tuberculosis. Many therapeutic agents were developed over the years to combat TB, however the rapid emergence of resistant strains hampered their use. Furthermore, most of the current anti-TB drugs experience many challenges, which can be summarized in treatment regimen factors, drug-drug interactions, and physicochemical characteristics factors (such as hydrophobicity and low permeability into alveolar macrophages). These challenges have a significant role in treatment failure and the emergence of resistant TB. Due to the lack of newly discovered anti-TB drugs, and the absence of effective vaccines, many scientists have suggested the use of novel modalities for the current anti-TB drugs to enhance their efficacy and overcome some of the drawbacks. One of these modalities is nanotechnology-based drug delivery systems. Most of the anti-TB drugs experience low drug distribution to the lung and particularly alveolar macrophages within which the MTB resides, leading to treatment failure. Employing nanoparticles as drug delivery systems can have a significant impact on improving the pharmacokinetic profile of anti-TB drugs, the feasibility of different routes of administration, enhancing drug permeability, controlled/sustained drug release, and targeting specific disease sites. Collectively, these impacts will aid in enhancing drug concentration at the site of infection and reduce dosing and regimen duration. Dendrimers, such as polyamidoamine (PAMAM) dendrimers, are synthetic polymeric nanoparticles that have unique features that afford a dendrimer-conjugate complex the possibility to overcome the most common hurdles associated with drug delivery and treatment of diseases. Obstacles associated with solubility, permeability, inadequate biodistribution associated side effects may be enhanced. Manipulating the outermost surface functional groups with various ligands and polymers, will enhance the dendrimer properties and targeting potential. Aim: This study aims to develop a novel pulmonary delivery system for the anti-TB drug rifampicin using surface-modified G4 PAMAM dendrimer nanoparticles (polyethylene glycol (PEG) or mannose moieties), to improve drug solubility, prolong-release, enhance permeability into the macrophages, and decrease the toxicity of the drug-dendrimer conjugates. Methods: PAMAM dendrimers having increasing concentrations of poly(ethylene glycol) (PEG) 2 kDa or mannose residues were synthesized. The 4-nitrophenyl chloroformate was used as an activator in the case of PEG functionalization, while for the mannose conjugation the 4-isothiocyanatophenyl alpha-D-mannopyranoside (4-ICPMP) directly interacted with the primary amines of the dendrimer. The conjugated PEG polymers and mannose moieties on the dendrimer periphery were confirmed using FTIR and 1H NMR analytical techniques. Thereafter, rifampicin was loaded into the native and surface-modified dendrimers via a simple dissolution solvent evaporation method. Rifampicin-loaded dendrimers were then characterized using several analytical techniques namely; FTIR, DSC, NMR, SEM, and DLS. The polymer encapsulation efficiency (EE%) and percentage of drug loading (DL%) were determined directly using a validated HPLC method. In vitro drug release was studied at pH 7.4 and pH 4.5. The MTT technique was used to assess the cytotoxicity of the dendrimer formulations against raw 264.7 cell lines. Finally, the uptake of dendrimer nanoparticles by raw macrophages was studied using a flow cytometer and fluorescence microscopy techniques. Results: The percentage coverage of 4.0 G PAMAM dendrimer peripheral with PEG was achieved in a range of 38% - 100%, while for mannose moieties was from 44% - 100%. The EE% of unmodified dendrimer was 7.5% (w/w). The EE% of PEGylated dendrimers ranged from 65.0% - 78.75% (w/w), whereas for mannosylated dendrimers was from 43.43% - 57.91% (w/w). The size of the unloaded dendrimer nanoparticles was less than 25 nm, a gradual increase in the size after drug conjugation followed. The zeta potential of dendrimers was positive with values greater than 12 mV, the nanoparticle's zeta potential decreased upon increasing the density of PEG/mannose and after drug loading. FTIR and NMR data showed that rifampicin molecules were conjugated to the dendrimer at three sites; at the surface amines via electrostatic linkages, within the PEG/mannose, and into the dendrimer interior. SEM images of dendrimer nanoparticles confirmed the spherical shape of particles, and DSC data verified drug entrapment. Drug release was found to be affected by the pH of the medium and the extent of dendrimer functionalization. At the physiologic pH, surface-modified dendrimers showed a slower release rate compared to the unmodified dendrimer and free drug. Among surface-modified dendrimers, the release rate was inversely associated with the density of PEG/mannose molecules. At pH 4.5, a relatively higher drug release from all formulations was observed which suggests a burst release inside the alveolar macrophages. Toxicity studies showed that the unmodified dendrimer experienced time-dependent and concentration-dependent cytotoxicity against raw 264.7 cells. The toxicity gradually decreased upon increasing the density of PEG/mannose, and negligible toxicity was detected for formulations with 100% functionalization. Dendrimer nanoparticles were successfully internalized into raw cells after 24 hrs of incubation. The order of nanoparticles permeability was PEG 100% < PEG 85% < PEG 70% < PEG 49% < PEG 38% < unmodified dendrimer < mannose 44% < mannose 69% < mannose 93% < mannose 100%. The significant increase in the uptake of mannosylated dendrimers was due to the interaction with lectin receptors at the surface of raw macrophages, whereas the lower internalization of PEGylated dendrimers was due to the shielding of the surface positive charges. Conclusion: The in-vitro and ex-vivo data studies suggested that the developed novel surface-modified G4 PAMAM dendrimers are suitable drug carriers in terms of biocompatibility, release behaviour, and site-specific delivery of the anti-TB drug rifampicin.
9

The Effect of PEG-Insulin and Insulin Hexamer Assembly on Stability in Solution and Dry Powders. Hexamer Assembly of PEGylated-Insulin and Insulin Studied by Multi-Angle Light Scattering to Rationally Choose the pH and Zinc Content for Analytical Methods and Formulations of Dry Powders.

Bueche, Blaine January 2010 (has links)
The objective of this research is to further define the relationship between the charge state of insulin, and the self assembly properties of insulin and PEGylated insulin in solution. Polyethylene glycol (PEG) chains were covalently attached to insulin in order to evaluate their impact on insulin¿s systemic duration of action after pulmonary dosing. This thesis will focus on the assembly properties of the PEG-insulin and insulin, and also demonstrate how the charge state, which was modified by the covalent attachment of PEG, relates to different modes of behavior by anion and cation exchange chromatography. In addition, explain how modifying the assembly state extends to improving formulation properties of spray-dried insulin powders. This thesis is an investigation into the relationship of insulin¿s charge state controlled by pH and how the charge state affects the self assembly of insulin, especially when the zinc ion is removed. Ionic interaction is one of the major forces affecting insulin assembly. The theory that a change in the charge state of insulin could modulate the ionic interaction and reduce hexamer formation at alkaline conditions was investigated. Experiments were designed to measure the level of hexamer with light scattering, and the amount of hexamer was then correlated with the pH and zinc content of the solutions. The importance of the charge state of the monomer and its behavior extends to chromatography and purification modes as well. Specifically, the purification of various species of PEGylated insulin presents a challenge. By varying mobile phase pH which induces the charge to insulin, an ion exchange method demonstrated very high resolution and controllable interaction between the ion exchange media and the insulin derivatives. A highly accurate method for determining molecular weight and thus the average associated state of insulin in solution has been developed using the MALS (Multi-Angle Light Scattering). Insulin concentration, pH, and metal ion concentrations, were in pharmaceutically relevant ranges. The MALS method was developed to evaluate how the parameters above affect the self-assembly properties of insulin, and use the assembly properties to improve formulations of insulin or PEGylated insulin. To use the light scattering technique the dn/dc (change in refractive index with change in concentration) is required. During the method development, the dn/dc of insulin was measured at 690 nm, and a value of 0.185 mL/g based on theory was confirmed. A novel approach for preparing insulin powders with improved chemical stability, based on maintaining the dissociation of hexamers in solution during the spray drying process was developed. The mode presented here is to remove the zinc ions from solution, increase the pH from 6.6 to 7.8, and maintain a low concentration of insulin approximately 2 to 15 mg/mL. Each of these factors alone decreases the hexamer population in solution, but by combining all three factors, hexamers are driven to very low levels of equilibrium. The increased stability of the powders is predominately related to the decrease in covalent insulin dimer (CID). The data presented correlates a reduced hexamer population in the solution with lower levels of CID¿s in the dry powder compared to controls. The CID formation rate was reduced by 40% compared to a control.
10

Synthesis of multi-functional dendrimers for targeted delivery of nucleic acids

Wang, Qi 16 November 2012 (has links)
Nous avons démontré que structurellement flexibles poly(amidoamine) (PAMAM) dendrimères sont efficaces système de livraison de siRNA in vitro et in vivo récemment. Nous voulons mener une enquête plus approfondie sur la livraison de siRNA ciblés en utilisant des dendrimères conjugués avec des ligands spécifiques ou d'anticorps, qui peuvent reconnaître les récepteurs correspondants ou des protéines exprimées à la surface des cellules. De cette façon, le siRNA peuvent être livrés spécifiquement aux cellules d'intérêt, conduisant à une délivrance ciblée, ce qui peut améliorer l'efficacité livraison et de réduire la toxicité en évitant les interactions non spécifiques et à des doses plus faibles. À cette fin, nous avons développé des dendrimères portant une chaîne PEG long et un dendron individu polyvalent. La chaîne PEG est de libérer l'encombrement stérique entre dendrimère et ligand / anticorps, tandis que le dendron multivalent fournit une plate-forme d'une conjugaison contrôlable de ligands. Par ailleurs, nous avons également conçu et synthétisé une autre dendrimères PEGylées portant un groupe thiol libre pour la préparation des anticorps / dendrimère conjugués. / We have demonstrated that structurally flexible poly(amido)amine (PAMAM) dendrimers are efficient siRNA delivery system in vitro and in vivo recently. We would like to undertake further investigation on targeted siRNA delivery using dendrimers conjugated with specific ligands or antibodies, which can recognize the corresponding receptors or proteins expressed on the cell surface. In this way, siRNA can be delivered specifically to the cells of interest, leading to targeted delivery, which can further improve the delivery efficiency and reduce the toxicity by avoiding non-specific interactions and at lower doses. To this end, we have developed dendrimers bearing a long PEG chain and an individual multivalent dendron. The PEG chain is to release the steric congestion between dendrimer and ligand/antibody, whereas the multivalent dendron provides a platform of a controllable conjugation for ligands. Besides, we also designed and synthesized another PEGylated dendrimers bearing a free thiol group for the preparation of antibody/dendrimer conjugates.

Page generated in 0.069 seconds