Spelling suggestions: "subject:"perceptron""
31 |
Learning action representations using kernel perceptronsMourao, Kira Margaret Thom January 2012 (has links)
Action representation is fundamental to many aspects of cognition, including language. Theories of situated cognition suggest that the form of such representation is distinctively determined by grounding in the real world. This thesis tackles the question of how to ground action representations, and proposes an approach for learning action models in noisy, partially observable domains, using deictic representations and kernel perceptrons. Agents operating in real-world settings often require domain models to support planning and decision-making. To operate effectively in the world, an agent must be able to accurately predict when its actions will be successful, and what the effects of its actions will be. Only when a reliable action model is acquired can the agent usefully combine sequences of actions into plans, in order to achieve wider goals. However, learning the dynamics of a domain can be a challenging problem: agents’ observations may be noisy, or incomplete; actions may be non-deterministic; the world itself may be noisy; or the world may contain many objects and relations which are irrelevant. In this thesis, I first show that voted perceptrons, equipped with the DNF family of kernels, easily learn action models in STRIPS domains, even when subject to noise and partial observability. Key to the learning process is, firstly, the implicit exploration of the space of conjunctions of possible fluents (the space of potential action preconditions) enabled by the DNF kernels; secondly, the identification of objects playing similar roles in different states, enabled by a simple deictic representation; and lastly, the use of an attribute-value representation for world states. Next, I extend the model to more complex domains by generalising both the kernel and the deictic representation to a relational setting, where world states are represented as graphs. Finally, I propose a method to extract STRIPS-like rules from the learnt models. I give preliminary results for STRIPS domains and discuss how the method can be extended to more complex domains. As such, the model is both appropriate for learning data generated by robot explorations as well as suitable for use by automated planning systems. This combination is essential for the development of autonomous agents which can learn action models from their environment and use them to generate successful plans.
|
32 |
Perceptron sous forme duale tronquée et variantesRouleau, Christian. January 1900 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2007. / Titre de l'écran-titre (visionné le 18 sept. 2007). Bibliogr.
|
33 |
Model building in neural networks and hidden Markov models /Wynne-Jones, Michael. Unknown Date (has links)
Thesis (Ph.D.)--University of Edinburgh, 1994.
|
34 |
Intervalos de predição para redes neurais artificiais via regressão não linearFerronato, Giuliano January 2008 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação. / Made available in DSpace on 2012-10-24T01:24:51Z (GMT). No. of bitstreams: 1
258459.pdf: 252997 bytes, checksum: a0457bb78b352c0aab2bb1f48ab79985 (MD5) / Este trabalho descreve a aplicação de uma técnica de regressão não linear (mínimos quadrados) para obter predições intervalares em redes neurais artificiais (RNA#s). Através de uma simulação de Monte Carlo é mostrada uma maneira de escolher um ajuste de parâmetros (pesos) para uma rede neural, de acordo com um critério de seleção que é baseado na magnitude dos intervalos de predição fornecidos pela rede. Com esta técnica foi possível obter as predições intervalares com amplitude desejada e com probabilidade de cobertura conhecida, de acordo com um grau de confiança escolhido. Os resultados e as discussões associadas indicam ser possível e factível a obtenção destes intervalos, fazendo com que a resposta das redes seja mais informativa e consequentemente aumentando sua aplicabilidade. A implementação computacional está disponível em www.inf.ufsc.br/~dandrade.
This work describes the application of a nonlinear regression technique (least squares) to create prediction intervals on artificial neural networks (ANN´s). Through Monte Carlo#s simulations it is shown a way of choosing the set of parameters (weights) to a neural network, according to a selection criteria based on the magnitude of the prediction intervals provided by the net. With this technique it is possible to obtain the prediction intervals with the desired amplitude and with known coverage probability, according to the chosen confidence level. The associated results and discussions indicate to be possible and feasible to obtain these intervals, thus making the network
response more informative and consequently increasing its applicability. The computational implementation is available in www.inf.ufsc.br/~dandrade.
|
35 |
Aplicação do perceptron de múltiplas camadas no controle direto de potência do gerador de indução duplamente alimentado / Application of the multilayer perceptron on the direct power control of the DFIGMarchi, Rodrigo Andreoli de 18 August 2018 (has links)
Orientadores: Edson Bim, Fernando José Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-18T01:48:41Z (GMT). No. of bitstreams: 1
Marchi_RodrigoAndreolide_M.pdf: 5160130 bytes, checksum: 8e043b48f5cd0e86cc078b3adc27f74b (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho é apresentada a estratégia de Controle Direto de Potência para o Gerador de Indução Duplamente Alimentado utilizando um controlador Perceptron de Múltiplas Camadas. O controlador tem a função de gerar os sinais das componentes de eixo direto e quadratura da tensão do rotor, sem a necessidade de controladores de corrente. A estratégia de controle apresentada permite operar o conversor de potência, conectado aos terminais do rotor, com frequência de chaveamento constante. A rede neural foi treinada off-line, a partir de um algoritmo de otimização de segunda ordem baseado no gradiente conjugado estendido, utilizando um conjunto de amostras obtido por meio da simulação digital de uma máquina de rotor bobinado de potência igual a 2 MW. Resultados de simulação digital com os dados dessa máquina, operando no modo gerador e com dupla alimentação, são apresentados para vários valores de potência ativa e reativa, e para velocidades fixas e variáveis, compreendidas na faixa de -15% a +15% da velocidade síncrona. Com o controlador implementado por uma rede neural artificial e treinada para uma máquina de 2 MW, testes de simulação digital e experimentais para uma máquina de 2,2 kW, operando na velocidade subsíncrona, são apresentados para validar a proposta / Abstract: This work presents a direct power control strategy for the doubly fed induction generator using a controller artificial neural networks, more specifically a multilayer perceptron. The controller has the role of generating the direct and quadrature-axis component signals of the rotor voltage, without the need of current controllers. The proposed control strategy allows to operate the converter, connected to the rotor terminals, with a fixed switching frequency. The multilayer perceptron was subject to an off-line training procedure using a second order algorithm based on an extend version of the conjugate gradient algorithm, using a set of samples produced by a 2 MW machine's digital simulation. Results of digital simulation for this machine are presented for several values of active and reactive power, with the generator operating on fixed and variable speed, in the range of -15% and +15% of the synchronous speed, considering the parameters of 2 MW machine. With the artificial neural network controller designed for this machine, digital simulation tests and experimental tests for a 2,2 kW machine, operating in a sub-synchronous speed, arc presented to validate the proposal / Mestrado / Energia Eletrica / Mestre em Engenharia Elétrica
|
36 |
Estudo das dispersões metrológicas em redes neurais artificiais do tipo Multilayer Perceptrons através da aplicação em curvas de calibração. / Study of metrological dispersions in Mulltilayer Perceptrons, one type of artificial neural networks, through calibration curve application.Barbosa, Itamar Magno 07 December 2009 (has links)
Este trabalho é um estudo das dispersões metrológicas em aproximações de funções tidas como não conhecidas ou não totalmente conhecidas. A metodologia alternativa para esse fim são as redes neurais artificiais do tipo Multilayer Perceptrons (MLP), aqui utilizadas como aproximadoras de funções. As funções aproximadas são curvas de calibração decorrentes de indicações de instrumentos ou sistemas de medição numa calibração. Essas curvas levam consigo propriedades metrológicas e possuem, neste trabalho, papel de ponte entre os elementos considerados da teoria metrológica e os elementos considerados da teoria da Inteligência Computacional: as Multilayer Perceptrons (MLPs). Uma balança externa de medição de esforços aerodinâmicos e uma Língua Eletrônica (LE), aplicada na medição da concentração de cátions, foram os meios de aplicação dos conceitos dessa metodologia alternativa. As proposições desta tese visam implementar melhorias na exatidão do ajuste das curvas de calibração por meio da consideração dos seguintes fatores: grandezas de influências, incertezas nos Valores Objetivos (VOs), tendência de medição de erros sistemáticos ocultos ou não solvidos e indicadores de desempenho metrológicos. A indicação da qualidade na medição ou a indicação da competência metrológica de um laboratório de calibração é estabelecida pelos valores das incertezas, e a curva de calibração é o ponto de partida para os cálculos desses valores. Visto que o estabelecimento dessa curva é uma das dificuldades para o cálculo das incertezas e a própria curva é uma fonte de incerteza, sua aproximação requer uma a cuidadosa e meticulosa metodologia, daí a importância estratégica deste trabalho. As dispersões metrológicas possuem conotação de incertezas nas medições e elas são a base para a determinação de seu valor numérico; assim, os indicadores de desempenho podem representar essas dispersões e a recíproca também é verdadeira: a incerteza padrão pode ser um dos indicadores de desempenho. Sintetizando, nesta tese é mostrado de que forma a teoria da inteligência computacional adentra na teoria da metrologia e vice versa, nas esferas dos elementos aqui considerados. / The present study investigates metrological dispersions in fitting partially or totally unknown functions. An alternative method is the application of a multilayer perceptron neural network used here to fit functions. The fitting functions are calibration curves from calibration indications of measurement systems or instruments. These curves hold metrological properties and establish a link between elements of Metrological theory and elements of Computing Intelligence theory: the Multilayer Perceptrons. An external balance of aerodynamic forces and moments and an electronic tongue applied in the measurement of cation concentrations were the measurement systems used to apply the concepts of this alternative methodology. This thesis proposes improvements in the accuracy of fitting calibration curves considering the following factors: influence quantities, uncertainties about target values, tendency of hidden or not solved systematic errors and metrological performance functions. The measurement quality indicator or the laboratory metrological competence indicator is established by uncertainty values and the calibration curve is the starting point for the calculation of these values. The establishment of this curve is one of the difficulties in assessing uncertainties and the curve itself is an uncertainty source. Therefore, a careful and meticulous methodology is necessary in curve approximation, which explains the strategic importance of this work. Metrological dispersions have connotation of uncertainty in measurements and are the basis for calculating their numerical values, the performance functions can represent metrological dispersions and the opposite is also true: the standard uncertainty can be a performance function. Making a synthesis, this thesis demonstrates how computing intelligence theory takes into account the metrological theory and vice versa, in the elements of these theories that were discussed in the present study.
|
37 |
Estudo das dispersões metrológicas em redes neurais artificiais do tipo Multilayer Perceptrons através da aplicação em curvas de calibração. / Study of metrological dispersions in Mulltilayer Perceptrons, one type of artificial neural networks, through calibration curve application.Itamar Magno Barbosa 07 December 2009 (has links)
Este trabalho é um estudo das dispersões metrológicas em aproximações de funções tidas como não conhecidas ou não totalmente conhecidas. A metodologia alternativa para esse fim são as redes neurais artificiais do tipo Multilayer Perceptrons (MLP), aqui utilizadas como aproximadoras de funções. As funções aproximadas são curvas de calibração decorrentes de indicações de instrumentos ou sistemas de medição numa calibração. Essas curvas levam consigo propriedades metrológicas e possuem, neste trabalho, papel de ponte entre os elementos considerados da teoria metrológica e os elementos considerados da teoria da Inteligência Computacional: as Multilayer Perceptrons (MLPs). Uma balança externa de medição de esforços aerodinâmicos e uma Língua Eletrônica (LE), aplicada na medição da concentração de cátions, foram os meios de aplicação dos conceitos dessa metodologia alternativa. As proposições desta tese visam implementar melhorias na exatidão do ajuste das curvas de calibração por meio da consideração dos seguintes fatores: grandezas de influências, incertezas nos Valores Objetivos (VOs), tendência de medição de erros sistemáticos ocultos ou não solvidos e indicadores de desempenho metrológicos. A indicação da qualidade na medição ou a indicação da competência metrológica de um laboratório de calibração é estabelecida pelos valores das incertezas, e a curva de calibração é o ponto de partida para os cálculos desses valores. Visto que o estabelecimento dessa curva é uma das dificuldades para o cálculo das incertezas e a própria curva é uma fonte de incerteza, sua aproximação requer uma a cuidadosa e meticulosa metodologia, daí a importância estratégica deste trabalho. As dispersões metrológicas possuem conotação de incertezas nas medições e elas são a base para a determinação de seu valor numérico; assim, os indicadores de desempenho podem representar essas dispersões e a recíproca também é verdadeira: a incerteza padrão pode ser um dos indicadores de desempenho. Sintetizando, nesta tese é mostrado de que forma a teoria da inteligência computacional adentra na teoria da metrologia e vice versa, nas esferas dos elementos aqui considerados. / The present study investigates metrological dispersions in fitting partially or totally unknown functions. An alternative method is the application of a multilayer perceptron neural network used here to fit functions. The fitting functions are calibration curves from calibration indications of measurement systems or instruments. These curves hold metrological properties and establish a link between elements of Metrological theory and elements of Computing Intelligence theory: the Multilayer Perceptrons. An external balance of aerodynamic forces and moments and an electronic tongue applied in the measurement of cation concentrations were the measurement systems used to apply the concepts of this alternative methodology. This thesis proposes improvements in the accuracy of fitting calibration curves considering the following factors: influence quantities, uncertainties about target values, tendency of hidden or not solved systematic errors and metrological performance functions. The measurement quality indicator or the laboratory metrological competence indicator is established by uncertainty values and the calibration curve is the starting point for the calculation of these values. The establishment of this curve is one of the difficulties in assessing uncertainties and the curve itself is an uncertainty source. Therefore, a careful and meticulous methodology is necessary in curve approximation, which explains the strategic importance of this work. Metrological dispersions have connotation of uncertainty in measurements and are the basis for calculating their numerical values, the performance functions can represent metrological dispersions and the opposite is also true: the standard uncertainty can be a performance function. Making a synthesis, this thesis demonstrates how computing intelligence theory takes into account the metrological theory and vice versa, in the elements of these theories that were discussed in the present study.
|
38 |
Redes neurais artificiais como ferramenta para prognose de crescimento e melhoramento genético florestal /Silva, William de Medeiros January 2019 (has links)
Orientador: Rinaldo Cesar de Paula / Resumo: RESUMO – O eucalipto é a cultura de maior destaque para o setor florestal brasileiro. No entanto, a expansão do setor para áreas com condições climáticas limitantes ao desenvolvimento da cultura e a instabilidade climática atual, são alguns dos fatores que têm comprometido o desenvolvimento desta cultura no país nos últimos anos. Assim, é importante a busca contínua por ferramentas que possibilitem a prognose de crescimento, a seleção de indivíduos e famílias e a análise do comportamento de genótipos de eucalipto frente às variações ambientais de forma cada vez mais acurada. Desta forma, o objetivo geral deste trabalho foi testar o desempenho das Redes Neurais Artificiais (RNA) na modelagem de crescimento de clones de eucalipto, na predição de valores genéticos de indivíduos e famílias, e na seleção quanto à produtividade, estabilidade e adaptabilidade de progênies de Eucalyptus sp. Para a prognose de crescimento foram utilizados dados de 18 clones comerciais de Eucalyptus em diferentes estados do Brasil, e para a estimação de valor genético e análise de produtividade, estabilidade e adaptabilidade foram utilizados dados de testes de progênies de Eucalyptus grandis. Neste trabalho foram testadas diferentes arquiteturas de RNA do tipo múltiplas camadas com o algoritmo de aprendizado de retropropagação do erro e função de ativação do tipo tangente hiperbólica. O modelo desenvolvido para prognose do diâmetro à altura do peito (DAP) de árvores individuais em um local foi capaz de... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: ABSTRACT – Eucalyptus is the most important crop of the most important for the Brazilian forest sector. However, the expansion of the sector to areas with climatic conditions limiting the development of the crop and current climate instability are some of the factors that have compromised the development of this culture in the country in recent years. Thus, it is important to continuously search for tools that allow the prognosis of growth, the selection of individuals and families and the analysis of the behavior of eucalyptus genotypes in the face of environmental changes in an increasingly accurate way. Thus, the general objective of this work was to test the performance of artificial neural networks (ANN) in the modeling of growth of eucalyptus clones, prediction of genetic values of individuals and families, and selection of productivity, stability and adaptability of progenies of Eucalyptus sp. For the prognosis of growth, data from 18 commercial Eucalyptus clones were used in different states of Brazil, and for genetic value estimation and productivity, stability and adaptability analysis data from Eucalyptus grandis progenies were used. In this work, different ANN architectures of the multilayer type were tested with the backpropagation error algorithm and hyperbolic tangent activation function. The model developed for prognosis of the diameter at breast height (DBH) individual trees in one place was able to maintain good accuracy when applied at other sites. The thre... (Complete abstract click electronic access below) / Doutor
|
39 |
A Fast MLP-based Learning Method and its Application to Mine Countermeasure MissionsShao, Hang 16 November 2012 (has links)
In this research, a novel machine learning method is designed and applied to Mine Countermeasure Missions. Similarly to some kernel methods, the proposed approach seeks to compute a linear model from another higher dimensional feature space. However, no kernel is used and the feature mapping is explicit. Computation can be done directly in the accessible feature space. In the proposed approach, the feature projection is implemented by constructing a large hidden layer, which differs from traditional belief that Multi-Layer Perceptron is usually funnel-shaped and the hidden layer is used as feature extractor.
The proposed approach is a general method that can be applied to various problems. It is able to improve the performance of the neural network based methods and the learning speed of support vector machine. The classification speed of the proposed approach is also faster than that of kernel machines on the mine countermeasure mission task.
|
40 |
Understanding hand-printed algebra for computer tutoring.Purcell, Stephen Clark January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 57-61. / M.S.
|
Page generated in 0.0556 seconds