Spelling suggestions: "subject:"peut control"" "subject:"pet control""
291 |
Spatial distribution of the rodent population at Boundary Stream Mainland Island and determination of the efficacy of different baits used for rodent controlWissel, Silke January 2008 (has links)
Poison operations are a widely used technique for rodent control in the indigenous forests of New Zealand. This study examined the bait-take and rat monitoring data obtained for continuous poison operations at Boundary Stream Mainland Island (BSMI), Hawke’s Bay, between 1996 and 2007. Since the beginning of the Mainland Island project at BSMI in 1996, 800 ha of indigenous forest have been treated with an ‘Integrated Pest Management’ approach, in which rodents (primarily ship rats) have been targeted by consecutive ground poison operations. The aim of the intensive pest control was to allow the ecosystem to recover and provide a safe environment for threatened native bird species to recover or be re-introduced. Another important aim of this pest control is to provide experience and expert knowledge in management techniques especially applicable to the protection of indigenous habitat on the New Zealand mainland. This research study had two main aims: to identify spatial patterns of the rodent population at BSMI and to determine the efficacy of the different rodenticides applied for their control. The distribution of the rodent population was investigated by spatial analysis of bait-take across the reserve and through time. Visualisation of high and low bait-take areas revealed that there was a noticeable reinvasion from adjacent unmanaged native forests, but not markedly from exotic forest or pasture. Reinvasion from small and isolated adjacent forests ceased to be noticeable consistently after approximately four years of the poison operation, while a large scenic native reserve, as well as a narrow part of the treatment area surrounded by many native bush patches, were continuously affected by reinvasion through the entire project time. Bait-take was visibly higher after the bait had either been removed, or left in the field unserviced, over winter. No consistent areas of no bait-take were identified. Further statistical analysis of bait-take data revealed that bait-take was higher in bait stations within 150 m of the treatment edge than interior bait stations. Bait-take in broadleaf/tawa/podocarp forest was significantly higher than in kamahi/kanuka/rewarewa, beech and cloud-cap forest. The second aim of the study was to determine the efficacy of the various bait types with different active ingredients used during the operation. Rat monitoring data, namely rat tracking indices (RTI) obtained from tracking tunnels, were statistically modelled using Generalised Linear Models. Diphacinone cereal pellets (Pestoff® 50D, 0.05g/kg diphacinone) obtained the lowest RTI, followed by pindone cereal pellets (Pindone Pellets®, 0.5g/kg pindone), brodifacoum cereal pellets (Pestoff® 20p and Talon®, 0.02 g/kg brodifacoum), coumatetralyl paste (Racumin®, 0.375 g/kg) and diphacinone bait blocks (Ditrac®, 0.05 g/kg). Cereal pellet baits worked better than any other bait type used at this location. Season had no statistically significant effect on either RTI or bait-take estimates. The overall goal of the poison operation to decrease rat numbers, and to maintain low levels, has been met. However, the results of this study suggest that baiting needs to be done continuously and over the entire treatment area. Edge bait stations – particularly next to adjacent native forests – should be prioritised to target reinvading rodents. Poisons presented in cereal pellet baits should be preferred to other bait types. Both pindone and brodifacoum showed very good results, as well as diphacinone in cereal pellet baits.
|
292 |
"Die Landplage des Raupenfraßes" : Wahrnehmung, Schaden und Bekämpfung von Insekten in der Forst- und Agrarwirtschaft des preußischen Brandenburgs (1700-1850) / “The Plague of Caterpillar Feeding“ : Perception, Damage and Control of Insect Pests in Forestry and Agriculture of Prussian Brandenburg (1700-1850)Sprenger, Jana 05 May 2011 (has links)
No description available.
|
293 |
Local and landscape management effects on syrphid fly guilds: flower strips, farming practice and hedgesHänke, Sebastian 02 February 2012 (has links)
Während der letzten Jahrzehnte hat sich die Landwirtschaft grundlegend verändert und wird heute zunehmend von hocheffektiven, wirtschaftlich optimierten Produktionssystemen mit ausgedehnten Anbauflächen und dem damit verbundenen gesteigertem Einsatz von Kunstdüngern und Pestiziden geprägt. Diese Entwicklung bedingt jedoch auch den Verlust und die Fragmentierung von naturnahen Habitaten mit negativen Auswirkungen auf die Artenvielfalt in intensiv genutzten landwirtschaftlichen Gebieten. Der Rückgang der Artenvielfalt führt zur Schwächung von Ökosystemfunktionen wie der biologischen Schädlingskontrolle oder der Bestäubung von Ackerkulturen. Agrarumweltprogramme, ökologische Anbaumethoden und Habitatmanagement können helfen, diese negativen Auswirkungen abzumildern. Hierbei wird zunehmend deutlich, dass neben der lokalen Ebene auch der Einfluß der strukturellen Diversität auf der Landschaftsebene berücksichtigt werden muß: Eine Steigerung der Habitatdiversität auf der Landschaftsebene kann die Biodiversität auf der lokalen Ebene erhöhen, und so die negativen Folgen einer intensivierten Landnutzung kompensieren.
In dieser Arbeit wurden die Effekte von lokalem Habitatmanagement (künstlich angelegte Blühstreifen, Waldränder und Hecken) und die Effekte verschiedener Anbaumethoden (extensive im Gegensatz zu intensiver Nutzung) auf Schwebfliegen-Gilden untersucht. Des Weiteren wurde der Einfluß bestimmter Landschaftsparameter, wie das Verhältnis von landwirtschaftlich genutzter Fläche zu naturnahem Habitat (als Maß der strukturellen Komplexität der Landschaften), oder der prozentuale Anteil von Rapskulturen im Umfeld der Versuchsflächen untersucht. Schwebfliegen stellen eine der größten Gruppen der Insektenordnung Diptera dar und kommen in vielen verschiedenen Habitaten in landwirtschaftlich genutzten Gebieten vor. Während adulte Schwebfliegen hauptsächlich Pollen- und Nektarkonsumenten sind, zeigen ihre Larven eine große Vielfalt von Ernährungsstrategien, die von zoophagen über bakteriophage und phytophage bis hin zu fungivoren Spezies reichen. Aphidophage Spezies wie Episyrphus balteatus oder Sphaerophoria scripta stellen die im Untersuchungsgebiet die am häufigsten vertretenen Schwebfliegenarten dar und können eine wichtige Rolle bei der biologischen Schädlingskontrolle verschiedener Blattlausarten einnehmen (z.B. Sitobion avenae, Rhopalosiphum padi, Metopolophium dirhodum).
In dieser Arbeit haben wir den Einfluß künstlich angelegter Blühstreifen und natürlich entwickelter Grasstreifen auf Schwebfliegenpopulationen in Winterweizenfeldern untersucht, die entlang eines Gradienten der Landschaftskomplexität (zwischen 30% und 100% Ackerland auf mutiplen räumlichen Skalen von 0.5 bis 4 km Radien der Landschaftssektoren) lagen. Die Analyse des Einflusses extensiver im Vergleich zu intensiver Landwirtschaft wurde in zwei europäischen Ländern durchgeführt (Südschweden und Norddeutschland), indem jeweils vier Felder mit hoher landwirtschaftlicher Intensivierung (lokalisiert in strukturarmen Landschaften) mit vier Feldern mit niedriger landwirtschaftlicher Intensivierung (lokalisiert in strukturreichen Landschaften) verglichen wurden. Weiterhin wurde der Einfluß von Waldrändern, mit Waldrädern verbundenen Hecken und isolierten Hecken, die an landwirtschaftliche Flächen (Winterweizen- und Rapsfelder) angrenzten, im Zusammenhang mit veränderlichen Anteilen von Rapsfeldern in der umliegenden Landschaft im Hinblick auf die Häufigkeit von Schwebfliegen untersucht.
Die Ergebnisse haben gezeigt, dass Blühstreifen die Häufigkeit von Schwebfliegen steigern können: Die Schwebfliegen-Artenvielfalt in Weizenfeldern, die sich in der Nähe von Blühstreifen befanden, war ebenfalls erhöht. Weiterhin nahmen der Artenreichtum und die Häufigkeit von Schwebfliegen in den Blühstreifen zu, wenn der Anteil von Ackerland im umgebenden Landschaftsausschnitt anstieg, was zu einer Konzentration von Schwebfliegengemeinschaften auf den vereinzelten, aber als Nahrungsressource lohnenden, Blühstreifen führte.
Die Gesamthäufigkeit von Schwebfliegen, ebenso wie die Häufigkeit von aphidophagen Schwebfliegen, war auf den deutschen Versuchsflächen höher als auf den schwedischen Versuchsflächen. Die Häufigkeit von aphidophagen Schwebfliegen war in Feldern mit hoher Intensivierung erhöht, während nicht-aphidophage Schwebfliegen in Feldern mit niedriger Intensivierung häufiger waren. Außerdem tauchten Schwebfliegen in der deutschen Versuchsregion früher in der Saison auf, was möglicherweise eine engere Räuber-Beute-Synchronisation ermöglicht.
Die Abundanz der Schwebfliegen war in Rapsfeldern im Vergleich zu Weizenfeldern erhöht. Die Häufigkeit von aphidophagen Schwebfliegen in Hecken und Waldrändern unterschied sich entsprechend benachbarter Feldfrüchte (Weizen und Raps) und dem Anteil von Rapsfeldern in der umgebenden Landschaft. Hierbei zeigte sich eine verringerte Abundanz aphidophager Schwebfliegen in der Nachbarschaft von Rapsfeldern (Verdünnungseffekt) und eine erhöhte Abundanz in der Nachbarschaft von Winterweizenfeldern (Konzentrationseffekt) bei gleichzeitig hohen Anteilen von Rapsfeldern in der umgebenden Landschaft. Die Abundanz von aphidophagen Schwebfliegen war am höchsten in Hecken, welche mit einem Waldrand verbunden waren. Gleichzeitig zeigte sich auch eine erhöhte Abundanz in den an solche Standorte angrenzenden Agrarflächen, was auf ein gesteigertes Übertreten (spillover) zwischen den Hecken-Habitaten und den angrenzenden landwirtschaftlichen Flächen hindeutet, und auf diesem Wege möglicherweise auch die biologische Schädlingskontrolle und die Bestäuberleistung verbessern kann.
Im Allgemeinen haben die Resultate gezeigt, dass lokales Habitatmanagement die Diversität und die Häufigkeit von Schwebfliegen erhöhen kann und dabei möglicherweise auch die biologische Kontrolle von Getreideblattläusen gesteigert werden kann. Auf der Landschaftsebene unterstreichen die Resultate die Annahme, dass Umweltmanagement in strukturarmen Landschaften aufgrund der Konzentration hochmobiler Schwebfliegen in ressourcenreichen Habitaten effektiver ist als in Landschaften mit generell erhöhter Habitattypendiversität. Die relative Häufigkeit von aphidophagen Schwebfliegen variierte stark zwischen der deutschen und der schwedischen Versuchsregion, was auf eine veränderliche Rolle bestimmter Arten in unterschiedlichen Breiten hinweist. Schwebfliegen-Gilden (aphidophage im Gegensatz zu nicht-aphidophagen) wurden unterschiedlich von der landwirtschaftlichen Intensivierung beeinflußt. Die Häufigkeit von aphidophagen Schwebfliegen in naturnahen Hecken wird durch den Prozentsatz der Rapsfelder in der umgebenden Landschaft sowie die Art der benachbarten Feldfrüchte beeinflußt. Die positive Wirkung seminatürlicher Habitate wie künstlicher Blühstreifen und Hecken auf angrenzende Anbauflächen (mit veränderlicher Stärke entsprechend verschiedener Landschaftsparameter wie Ackeranteil und Rapsanteil) zeigt den dringenden Bedarf an gruppenspezifischen Habitatmanagementmethoden, um die Biodiversität und damit verbundene Ökosystemleistungen wie die biologische Schädlingskontrolle und Bestäubung in Agrarlandschaften zu verbessern.
|
294 |
Studies on the biocontrol of seedling diseases caused by Rhizoctonia solani and Pythium sp. on sorghum and tef.Tesfagiorgis, Habtom Butsuamlak. January 2003 (has links)
Rhizoctonia solani and Pythium spp. are aggressive soil-borne fungal pathogens responsible
for seed rot and seedling damping-off of many crops. With increased environmental and
public concern over the use of chemicals, biological control of these diseases has been
attracting more attention. However, success with this strategy depends on the development of
effective antagonists, which requires repeated in vitro and in vivo tests.
Bacillus spp. were isolated from a soil sample obtained from a field where sorghum and tef
had been grown for at least two years. Potential Bacillus isolates were screened for their
ability to inhibit in vitro growth of R. solani and Pythium sp. Among 80 isolates tested,
endospore forming Bacillus spp. H44 and H51 gave highest antifungal activity against the two
test-pathogens in three consecutive tests. Results demonstrated that both H44 and H51 have
potential as biocontrol agents against diseases caused by these two pathogenic fungi.
The interaction between three isolates of Trichoderma (T. harzianum Eco-T, Trichoderma spp.
SY3 and SY4) and Pythium sp. were investigated using in vitro bioassays together with
environmental scanning electron microscopy (ESEM). Visual observation on the dual culture
tests revealed that hyphal growth of Pythium was inhibited by these antagonists soon after
contact between the two organisms within 3-4 days of incubation. The ESEM investigations
showed that all three isolates of Trichoderma grew toward the pathogen, attached firmly,
coiled around and penetrated the hyphae of the pathogen, leading to the collapse and
disintegration of the host's cell wall. Degradation of the host cell wall was postulated as being
due to the production of lytic enzymes. Based on these observations, antibiosis (only by Eco-T)
and mycoparasitism (by all three isolates) were the mechanisms of action by which in vitro
growth of Pythium sp. was suppressed by these Trichoderma isolates.
The reduction of seedling diseases caused by R. solani and a pythium sp. were evaluated by
applying the antagonists as seed coating and drenching antagonistic Bacillus spp. (B81, H44
and H51) and Trichoderma (T. harzianum Eco-T and Trichoderma spp. SY3 and SY4). On
both crops, R. solani and Pythium sp. affected stand and growth of seedlings severely. With
the exceptions of H51, applications all of isoltes to seeds reduced damping-off caused by R.
solani in both crops. Application of Eco-T, H44 and SY3 to sorghum controlled R. solani and
Pythium sp. effectively by yielding similar results to that of Previcur®. On tef, biological
treatments with Eco-T and SY4 reduced seedling damping-off caused by R. solani and
Pythium sp., respectively, by providing seedling results similar to the standard fungicides,
Benlate® and Previcur®. Most other treatments gave substantial control of the two pathogens
on tef. Overall, Bacillus sp. H44 and T harzianum Eco-T were the best biocontrol agents from
their respective groups in reducing damping-off by the two pathogens. In all instances, effects
of application method on performance of biocontrol agents and adhesive on emergence and
growth of seedlings were not significant.
A field trial was conducted at Ukulinga Research Farm at the University of Natal,
Pietermaritzburg, South Africa, to determine efficacy of biological and chemical treatments on
growth promotion and reduction of damping-off incited by R. solani and Pythium sp., and to
evaluate the effects of a seed coating material, carboxymethyl cellulose (CMC), on seedling
emergence and disease incidence. Seeds of sorghum and tef were treated with suspensions of
antagonistic Bacillus H44 or T harzianum Eco-T, or sprayed with fungicides, Benlate® or
Previcur®. Application of Benlate® and Previcur® during planting significantly increased the
final stand and growth of sorghum seedlings. Seed treatments with both H44 and Eco-T
substantially controlled damping-off caused by Pythium, resulting in greater dry weights of
seedlings than the standard fungicide. However, they had negative effects when they were
tested for their growth stimulation and control of R. solani. The CMC had no significant effect
on germination and disease levels. These results showed that these antagonists can be used as
biocontrol agents against Pythium sp. However, repeated trials and better understanding of the
interactions among the antagonists, the pathogens, the crop and their environment are needed
to enhance control efficiency and growth promotion of these antagonists.
Some of these biocontrol agents used in this study have the potential to diseases caused by R.
solani and Pythium sp. However, a thorough understanding of the host, pathogen, the
antagonist and the environment and the interactions among each other is needed for successful
disease control using these antagonists. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
|
295 |
Evaluation of integrated control of postharvest grey mould and blue mould of pome fruit using yeast, potassium silicate and hot water treatments.Mbili, Nokwazi Carol. January 2012 (has links)
The public concern over synthetic pesticides in foods and the environment has created an interest to find effective and safe non-fungicide means of controlling postharvest pathogens. The overall objective of this thesis was to evaluate the effect of potassium silicate, yeast antagonists and hot water dip treatment to control postharvest grey mould and blue mould of pome fruits, caused by Botrytis cinerea and Penicillium expansum, respectively. Botrytis cinerea and Penicillium expansum were isolated from infected strawberry and pear fruits, respectively. These isolates were found to be non-resistant to YieldPlus® (Anchor yeast, Cape Town, South Africa), a biofungicide containing a yeast Cryptococcus albidus. A total of 100 epiphytic yeast isolates were obtained from the fruit surface of “Golden Delicious” apples and “Packham’s Triumph” pears, and screened against B. cinerea and P. expansum. Fifteen yeast isolates reduced grey mould incidence by > 50%, when applied four hours before inoculation with B. cinerea. Similarly, seven yeast isolates reduced blue mould incidence by > 50%, when applied four hours before inoculation with P. expansum. YieldPlus® and yeast Isolate YP25 provided the best control of B. cinerea, while Isolate YP60 and YieldPlus® provided the best control of P. expansum on “Golden Delicious” apples. A mixture of YP25 and YP60 provided complete control of both B. cinerea and P. expansum, when applied to “Golden Delicious” apples before inoculation with either B. cinerea or P. expansum. Electron microscopy studies showed that yeast Isolates YP25 and YP60 inhibited the mycelial growth of B. cinerea and P. expansum, respectively. Preventative and curative application of potassium silicate resulted in reduced incidence of B. cinerea or P. expansum of “Golden Delicious” apples. Electron microscopy studies indicated that potassium silicate inhibited the growth of B. cinerea and P. expansum. Furthermore, treatment of “Golden Delicious” apples with either potassium chloride or potassium hydroxide resulted in reduced incidence of both B. cinerea and P. expansum. In vivo tests showed that the disease incidence of P. expansum and B. cinerea on “Golden Delicious” apples was reduced by hot water dip treatments at 58-60°C for 60 to 120 seconds, compared with the control fruit treated with sterile distilled water, without causing skin damage. The use of potassium silicate, yeasts (Isolates YP25 and YP60), YieldPlus® and the antagonists mixture (YP25+YP60) in combination, resulted in the control of B. cinerea and P. expansum of “Golden Delicious” apples compared with Imazalil® treated fruit. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
296 |
Management of fusarium wilt diseases using non-pathogenic Fusarium oxysporum, and silicon and Trichoderma harzianum (ECO-T®)Kidane, Eyob Gebrezgiabher. January 2008 (has links)
In the genus Fusarium are many important plant pathogens. The diversity of hosts the genus attacks, the number of pathogenic taxa and the range of habitats in which they cause disease are the greatest in plant pathology. One important species complex within the genus Fusarium is Fusarium oxysporum Schlecht. This species complex consists more than 80 pathogenic forma specialis and is particularly difficult to control. The fungi can survive in soil for decades as specialized spores, known as chlamydospores. Interestingly, however, this species complex also contains beneficial non-pathogenic forms that can be exploited to manage Fusarium wilt diseases. In this study, the ability of non-pathogenic F. oxysporum strains, Trichoderma harzianum Rifai Eco-T®, soluble silicon, and their combination was evaluated on two important crops, banana (Musa sp. L.) and beans (Phaseolus vulgaris L.), for their potential to suppress pathogenic strains of F. oxysporum. The ability of these crops to take up and accumulate silicon in their organs, and its effect on low temperature stress was also investigated. Several endophytic fungi, mainly Fusarium spp. and bacteria, were isolated from healthy mature banana plants. After preliminary and secondary in vivo screening tests against F. oxysporum f.sp. phaseoli on beans (Phaseolus vulgaris L.) cv. Outeniqua, two non-pathogenic F. oxysporum strains were selected for further testing. These two non-pathogenic F. oxysporum strains were found to colonize banana (Musa sp.) cv. Cavendish Williams and bean plants, and to suppress Fusarium wilt of these crops. In order to improve the efficacy of these biocontrol fungi, soluble silicon was introduced. The relationship between plant mineral nutrition and plant diseases have been reported by several authors. Plants take up silicon equivalent to some macronutrients, although it is not widely recognized as an essential element. In this study, we established that roots, the target plant organ for soilborne plant pathogens, accumulated the greatest quantity of silicon of any plant organs when fertilized with high concentrations of silicon. On the other hand, the corm and stem accumulated the least silicon. Such observations contradict the concept of passive uptake of silicon via the transpiration stream in these plants as the only uptake mechanism. The prophylactic properties of silicon have been documented for many crops against a variety of diseases. In vitro bioassay tests of silicon against these wilt pathogens showed that silicon can be toxic to Fusarium wilt fungi at high concentrations (>7840 mg .-1), resulting in complete inhibition of hyphal growth, spore germination and sporulation. However, low concentrations of silicon (<490 mg .-1) encouraged hyphal growth. Silicon fertilization of banana and beans significantly reduced disease severity of these crops by reducing the impact of the Fusarium wilt pathogens on these crops. However, it could not prevent infection of plants from the wilt pathogens on its own. Synergistic responses were obtained from combined applications of silicon and non-pathogenic F. oxysporum strains against Fusarium wilt of banana. Combinations of silicon with the non-pathogenic F. oxysporum strains significantly suppressed disease severity of Fusarium wilt of banana, caused by F. oxysporum f.sp. cubense (E.F. Smith) Snyder & Hansen, better than applications of either control measure on their own. Banana production in the subtropical regions frequently suffer from chilling injury, and from extreme variations between night and day temperatures. Such stress predisposes banana plants to Fusarium wilt disease. Silicon, on the other hand, is emerging as important mineral in the physiology of many plants, ameliorating a variety of biotic and abiotic stress factors. We established that silicon fertilization of banana plants significantly reduced chilling injury of banana plants. Membrane permeability, lipid peroxidation (MDA level) and proline levels were higher in silicon-untreated plants than the treated ones, all of which demonstrated the stress alleviating effect of silicon. Low temperatures damage the cell membrane of susceptible plants and cause desiccation or dehydration of these cells. Levels of sucrose and raffinose, recognized as cryoprotectants, were significantly higher in silicon-amended banana plants than unamended plants. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
297 |
Isolation of entomopathogenic gram positive spore forming bacteria effective against coleoptera.Du Rand, Nicolette. January 2009 (has links)
Fourteen spore-forming bacterial strains were isolated and screened for entomopathogenic activity. Five displayed toxicity towards the common mealworm, Tenebrio molitor L., (Coleoptera: Tenebrionidae). The majority of the isolates were obtained from insect larvae and insect rich environments. The three bacterial species identified were Bacillus thuringiensis Berliner, Brevibacillus laterosporus Laubach and Bacillus cereus Frankland and Frankland. Bioassays were conducted using T. molitor larvae. The one isolate of B. cereus required the highest concentration of bacterial cells to achieve its LC50, whereas one of the isolates of B. laterosporus required the lowest cell concentration to achieve its LC50. Dose response curves were generated for the five best isolates, which showed that the isolate of B. laterosporus (NDR2) was substantially more toxic than the other isolates. / Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
298 |
Studies on the use of biocontrol agents and soluble silicon against powdery mildew of zucchini and zinnia.Tesfagiorgis, Habtom Butsuamlak. January 2008 (has links)
Powdery mildew (PM) is an important foliar disease of many crops, occurring under both greenhouse and field conditions. The application of biological control and soluble silicon (Si) against PM has received increasing acceptance as a result of increased environmental and public concern over the use of fungicides for disease management, and because many key fungicides are no longer effective because of resistance problems. However, success with these control options depends on the development of effective antagonists and understanding how best to use Si in agriculture. Potential antagonists of PM were isolated from naturally infected leaves of different plants. A total of 2000 isolates were tested in a preliminary screening on detached leaves of zucchini. The best 30 isolates showing consistent results were further tested under greenhouse conditions for their efficacy against PM of zucchini. In a greenhouse trial, 23 isolates provided disease control to levels of 30 to 77%. Application of 29 isolates resulted in significant reductions in values of area under disease progress curve (AUDPC). The best five isolates were identified as Clonostachys rosea (Link) Schroers, Samuels, Seifert & Gams (syn. Gliocladium roseum) (Isolate EH), Trichothecium roseum (Pers.) Link (syn. Cephalothecium roseum) (Isolate H20) and Serratia marcescens (Bizio) (Isolates B15, Y15 and Y41). Three adjuvants (Break-ThruR (BK), PartnerR (PR) and Tween-80R (T-80)) were compared for their ability to improve efficacy of spray application of silicon (Si) and biocontrol agents (BCAs) against PM. Both BK and PR improved the efficacy of Si significantly (P < 0.05). Microscopic studies showed that BK affected PM fungi directly and enhanced the deposition of BCAs on the pathogen. Break-ThruR was only toxic to the pathogen mycelia when used at > 0.25 m. .-1, but phytotoxic to zucchini plants when used at > 0.45m. .-1. However, it did not affect the c.f.u. of bacterial BCAs. Use of BK at 0.2-0.4 m. .-1 can be recommended to assist spray application of Si (at 750 mg .-1) or BCAs for improved control of PM. The effect of concentration, frequency of application and runoff of Si sprays applied to the foliage was evaluated for control of PM of zucchini. Silicon (250-1000 mg .-1) + BK (0.25 m. .-1), was sprayed onto zucchini plants at frequencies of 1-3 wk-1. Spraying Si reduced the severity of PM significantly (P < 0.05). Regardless of the concentration of Si, the best results were obtained when the frequency of the treatment was increased, and when spray drift or spray runoff were allowed to reach the rhizosphere of the plants. When Si was applied onto leaves, direct contact between the spray and the pathogen resulted in mycelial death. Part of the spray (i.e., drift and runoff) was absorbed by plant roots, and subsequently played an important role in the health of the plants. If affordable, soluble Si should be included in nutrient solutions of hydroponics or supplied with overhead irrigation schemes when PM susceptible crops are grown. Under greenhouse conditions, application of BCAs, with or without Si, reduced the severity and development of PM significantly (P < 0.001). Application of Si significantly reduced the severity and AUDPC values of PM (P < 0.05 for both parameters). Silicon alone reduced the final disease level and AUDPC values of PM by 23-32%, and improved the efficacy of most BCAs. In the course of the investigation, antagonistic fungi consistently provided superior performances to bacterial isolates, providing disease control levels of up to 90%. Higher overall disease levels reduced the efficacy of Si against PM, but did not affect the efficacy of BCAs. Under field conditions, Si alone reduced disease by 32-70%, Isolate B15 reduced disease by 30-53% and Isolate B15 + Si reduced disease by 33-65%. Other BCAs applied alone or together with Si reduced the disease level by 9-68%. Most BCAs reduced AUDPC values of PM significantly. For most antagonists, better efficacy was obtained when Si was drenched into the rhizosphere of the plant. However, efficacy of some of the BCAs and Si were affected by environmental conditions in the field. Repeated trials and better understanding of how to use Si and the BCAs, in terms of their concentration and application frequency, and their interactions with the plant and the environment, are needed before they can be used for the commercial control of PM. Elemental analysis was conducted to determine the impact of differing application levels of silicon (Si) in a form of potassium silicate (KSi) in solution in terms of Si accumulation and selected elements in different tissues of zucchini and zinnia and growth of these plants, and to study the effect of PM on the levels of selected elements in these two plant species. Plants were grown in re-circulating nutrient solutions supplied with Si at different concentrations and elemental composition in different parts were analysed using EDX and ICP-OES. Increased levels of Si in the solution increased the levels of Si in leaves and roots of both plants without affecting its distribution to other plant parts. In zucchini, the roots accumulated the highest levels of Si, substantially more than in the shoots. In contrast with zinnia, accumulation of Si was highest in the leaves. Accumulation of potassium (K) in shoots of both plants increased with increased levels of KSi in the nutrient solution. However, K levels in flower of zinnia, fruits of zucchini and roots of both plants remained unaffected. Increased level of Si reduced accumulation of calcium (Ca) in both plants. Adding Si into the nutrient solution at 50 mg .-1 resulted in increased growth of zucchini and increased uptake of P, Ca, and Mg by both plant species. However, application of higher levels of Si did not result in any further biomass increase in zucchini. Levels of Si in the nutrient solution had no effects on elemental composition and characteristics of the fruits of zucchini. In both plant species, the presence of PM on the leaves of plants resulted in these leaves accumulating higher levels of Si and Ca, but less P, than leaves of uninfected plants exposed to the same levels of soluble Si. The highest concentrations of Si were observed in leaf areas infected with PM, and around the bases of trichomes. For optimum disease control and maximum accumulation of different elements in these two plants, hydroponic applications of Si at 50-150 mg .-1 is recommended. Five selected biocontrol agents and potassium silicate, used as source of soluble Si, were tested under hydroponic conditions at various concentrations against PM of zinnia (Glovinomyces cichoracearum (DC) Gelyuta, V.P.). Application of BCAs resulted in reductions in final disease level and AUDPC values of PM by 38-68% and 30-65%, respectively. Both severity and AUDPC values of PM were reduced by 87-95% when plants were supplied with Si (50-200 mg .-1). It is proposed that the provision of a continuous supply of Si and the ability of this plant species to accumulate high levels of Si in its leaves were the major reasons for the good response of zinnia to Si treatments against PM. Silicon played a protective role before infection and suppressed development of PM after infection. The combination of the best selected BCAs and Si can be used as an effective control option against PM of zinnia when grown in hydroponic system. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
299 |
Aspects influencing the release and establishment of the flowerbud weevil, Anthonomus santacruzi Hustache (Coleoptera : Curculionidae), a biological control agent for Solanum mauritianum scopoli (Solanaceae) in South Africa.Hakizimana, Seth. 27 November 2013 (has links)
Solanum mauritianum (bugweed, woolly nightshade) is a perennial tree native to South America that has invaded many countries including South Africa and New Zealand. In South Africa, after 143 years of naturalization, the plant is ranked as the country‟s sixth worst weed and has invaded 1.76 million ha. Invaded areas include agricultural lands, forest plantations, water courses and conservation areas, especially in the eastern higher rainfall regions. The success of the spread of this weed is due to its production of very high numbers of bird-dispersed seeds. Since conventional control methods are unsustainable in the long term, the weed has been targeted for classical biological control since 1984.
Following exploration work in its native range, biological control experts recommended that agents that are able to limit the weed‟s reproductive potential would help to manage the spread and invasiveness of this weed. Anthonomous santacruzi, a flower-feeding weevil found throughout the native range of the weed, was imported and tested between 1998 and 2002. Following approval for its release in South Africa in 2007, a new colony was imported and propagated at the University of KwaZulu-Natal Pietermaritzburg. This study was initiated to investigate aspects that could influence the release and establishment of this agent. Three aspects were investigated namely: (1) reassessing the weevil's host range to confirm that the new colony is not different from the colony tested originally and to assess the risks associated with the release of the weevil in New Zealand; (2) surveying the arthropods associated with S. mauritianum in the field to identify groups of predators that could interfere with the establishment of the weevils as well as to investigate, through laboratory-based trials using spiders as surrogate, the impact of these predators on the survival and proliferation of the weevils; and (3) propagation and release of the weevil and monitoring of its establishment.
Host-specificity tests revealed that the host range of new colony is not different from that of the originally tested culture. In no-choice trials, the weevils fed and reproduced on some non-target Solanaceae species but reverted back to S. mauritianum in the choice tests. Although the risks for releasing the weevils in New Zealand were calculated to be very low, additional evidence is needed to demonstrate this conclusively. Future research to provide this evidence includes open-field trials complemented with a chemical ecology study, to resolve the case of two species, a New Zealand native and South African native, which have shown higher risks in comparison to the other tested species.
For arthropods associated with S. mauritianum in the field, Araneae (especially Thomisidae), Thysanoptera, Hemiptera (especially Miridae) and Hymenoptera (especially Formicidae) were identified as generalist predators that could interfere with the establishment of A. santacruzi. However, their numbers in the field appear to be too low to provide a major threat. Also, laboratory trials using spiders as a surrogate suggested that A. santacruzi populations can survive and reproduce in the presence of such predators.
The weevils were released at four sites in KwaZulu-Natal and monitoring of three of these has confirmed establishment at the warmest site along the South Coast but not at the coldest site in the Midlands. Further releases in the province are intended to complement these promising results, while additional studies are intended to facilitate the weevil's release in New Zealand. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
300 |
Investigation of the biology and cross-breeding of populations of Pareuchaetes insulata (Lepidoptera : Arctiidae) and the implications for the biological control of Chromolaena odorata (Asteraceae) in South Africa.Dube, Nontembeko. 27 May 2014 (has links)
Larvae of Pareuchaetes insulata were released in South Africa for the biological control of the invasive weed Chromolaena odorata. Pareuchaetes insulata has proved to be a difficult agent to establish in the field in South Africa, for various possible reasons. Populations collected from Florida and Jamaica (their aboriginal home) were released separately at several sites each in South Africa, but only one population (Florida) was definitely established. It is possible that adults from this established population interbred with adults from the Jamaican population released at nearby sites.
The aims of this study were to determine whether there were any differences in biology between the two populations and whether hybridization affected the fitness of either. Trials involved: (i) pure-breeding of both Florida (F) and Jamaica (J) populations; (ii) cross-breeding of the two populations and; (iii) back-crossing of the hybrids with the parent populations. The fitness of these populations was determined by measuring adult longevity and fecundity, egg viability, and larval development and survival rates.
The F population was superior to the J population in most of parameters measured, including fecundity. Hybridization of these populations reduced the fitness of the F population. It is unknown whether these differences in fitness reflect differences in their native regions, laboratory cultures or response to South African C. odorata. It appears that different populations of P. insulata have different levels of fitness, and that hybridization negatively affects the fitness of stronger populations. The lower fitness of the J population may have reduced its likelihood of establishing successfully, and even reduced the fitness of the established F population where the populations came into contact. These results caution that the possible consequences of mixing different genotypes of a biocontrol agent species should be properly investigated prior to their release in the same country. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
Page generated in 0.0756 seconds