Spelling suggestions: "subject:"petite protéines G""
1 |
Étude des mécanismes moléculaires qui contrôlent l’interaction entre EFA6 et ses partenaires / Molecular mechanisms that control the interaction between EFA6 and its partnersBoulakirba, Sonia 13 November 2015 (has links)
La petite protéine G Arf6 et son facteur d'échange EFA6 sont impliquées dans de nombreux processus cellulaires tels que le remodelage du cytosquelette d’actine, le transport vésiculaire et mise en place de la polarité épithéliale. Elles jouent également un rôle dans la voie d'endocytose dépendante de la clathrine. Ce travail de thèse nous a permis d’identifier différents mécanismes régulant l’interaction d’EFA6 avec ses différents partenaires. Nous avons pu mettre en évidence une interaction directe entre le domaine N-BAR de l’endophiline et le domaine Sec7 d’EFA6. Nous avons démontré que la courbure membranaire était un facteur régulant cette interaction. EFA6 est capable d’interagir et de recruter l’endophiline sur une membrane lipidique plane alors qu’en présence de vésicules courbées le complexe protéique ne se forme pas. Nous observons également que l’endophiline stimule l’activité d’échange nucléotidique d’EFA6 sur Arf6. Dans un second temps nous avons démontré, dans une étude menée par le Dr Cherfils, que l’activité catalytique d’EFA6 était régulée par une boucle de rétrocontrôle négatif exercée spécifiquement par la protéine Arf6-GTP. Celle-ci induit une diminution de l’activité d’échange d’EFA6 probablement grâce à sa capacité à interagir avec le domaine PH-C-terminal d’EFA6. Enfin, nous avons mis en évidence un repli intramoléculaire entre le domaine C-terminal et le domaine PH d’EFA6 qui semble contrôler l’interaction de cette extrémité C-terminale avec différents partenaires dont la β-arrestine et de façon surprenante la protéine Arf6 dans sa forme inactive. / The small G protein Arf6 and its exchange factor EFA6 control numerous cellular processes such as actin cytoskeleton remodeling, vesicular transport and apico-basal cell polarity. They are also involved in clathrin-dependent endocytosis. In this work we identify different mechanisms by which EFA6 interaction with its various partners is regulated. We have highlighted a direct interaction between the N-BAR domain of endophilin and the Sec7 domain of EFA6. We demonstrated that this interaction is regulated by the membrane curvature. EFA6 interacts and recruits endophilin on a flat lipid membrane whereas the protein complex does not occur in the presence of curved vesicules. We showed that endophilin stimulates the nucleotidic exchange activity of EFA6 on Arf6. Next we demonstrated that the catalytic activity of EFA6 is regulated by a negative feedback loop specifically mediated by the Arf6-GTP. We observed in the presence of Arf6-GTP a decrease of EFA6 catalytic activity and we showed that this effect was due to an interaction between Arf6-GTP and PH-C-terminal domain of EFA6. Finally we demonstrated an intramolecular folding between the C-terminal domain and the PH domain of EFA6 that controls the interaction of the C-terminus domain with various partners including β-arrestin and surprisingly the inactive GDP form of Arf6.
|
2 |
Étude du rôle du facteur d'ADP-ribosylation 6 dans la régulation du processus d'internalisation des récepteurs couplés aux protéines GPoupart, Marie-Ève January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Régulation de la polarité épithéliale par EFA6, facteur d'échange d'Arf6, et le système ubiquitine-protéasomeLuton, Frédéric 28 November 2007 (has links) (PDF)
Le bon fonctionnement de notre organisme repose sur de nombreux réseaux de communication intercellulaires (neurotransmetteurs, hormones, facteurs de croissance, lymphokines, molécules d'adhésion, etc.) prolongés par les voies de signalisation intracellulaires. Les signaux moléculaires sont des ligands reconnus par des récepteurs exprimés à la surface des cellules cibles. La fixation du ligand à son récepteur déclenche des voies de signalisation intracellulaires qui commandent la réponse fonctionnelle. Mes travaux scientifiques m'ont conduit à étudier diverses voies de signalisation intracellulaires qui seront évoquées dans cette HDR avec une emphase particulière sur les études les plus récentes.<br />Les cellules de la réponse immune cellulaire, les lymphocytes T, reconnaissent leur antigène spécifique à l'aide d'un récepteur multi-protéique, le complexe TCR/CD3. Le contrôle de son expression de surface est essentiel car le nombre de récepteurs stimulés par l'antigène et la durée de cette interaction déterminent la réponse fonctionnelle. Au cours de ma thèse au Centre d'Immunologie de Marseille-Luminy, j'ai participé à l'étude des mécanismes qui contrôlent l'expression de surface du récepteur et son internalisation suite à l'interaction avec l'antigène. Ces travaux ont permis 1) de corroborer que l'expression de surface du complexe TCR/CD3 est dépendante de l'assemblage complet de toutes les sous-unités qui le composent, 2) et surtout d'aborder le lien entre voies de signalisation associées au complexe TCR/CD3 et son internalisation stimulées par la liaison d'un ligand spécifique.<br />Le récepteur aux poly-immunoglobulines (pIgR) exprimé à la surface des cellules épithéliales qui tapissent la cavité interne de nos organes transcytose les anticorps sécrétés dans le milieu basal vers le lumen. Ainsi, ce récepteur approvisionne-t-il continuellement les sécrétions mucosales en anticorps (pIgA et pIgM). La forte augmentation de la quantité d'anticorps produits en réponse à une infection nécessite un transport accru de ces anticorps vers les surfaces mucosales à protéger. Pendant mon stage post-doctoral à UCSF (University of California, San Francisco) j'ai contribué 1) à montrer que la liaison des pIgA au pIgR stimulait une voie de signalisation, 2) à décrire au niveau moléculaire le fonctionnement de cette voie de signalisation, 3) à montrer in vivo que cette voie de signalisation stimule fortement la transcytose des pIgAs.<br />Les épithéliums représentent une barrière à la pénétration d'agents pathogènes mais également une surface d'échange avec le milieu extérieur. Pour accomplir leurs fonctions les cellules épithéliales maintiennent un phénotype polarisé avec un coté orienté vers les tissus sous-jacents (pôle basal) et un autre tourné vers le milieu extérieur (pôle apical). Ces cellules doivent établir entre elles des contacts physiques pour maintenir la cohésion de l'ensemble du tissu qu'elles constituent. Les contacts cellulaires sont assurés par des molécules d'adhésion (E-cadhérine) qui se comportent comme des récepteurs couplés à des voies de signalisation transduisant notamment des signaux qui participent au maintien de la polarité épithéliale. Depuis mon arrivée à l'IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), j'ai mis au jour une nouvelle voie de signalisation associée aux molécules de E-cadhérine qui comprend un facteur d'échange (EFA6) et son substrat la petite protéine G Arf6. Cette voie de régulation contrôle notamment la mise en place de la structure moléculaire, appelée jonction étroite, qui régule les échanges paracellulaires de l'épithélium et contribue à la polarité épithéliale. EFA6, connecté à deux voies de signalisation qui agissent de façon coordonnée, participe à l'organisation du cytosquelette d'actine qui soutient la jonction étroite. Par ailleurs, nous avons trouvé que le niveau d'expression d'EFA6 est étroitement régulé pendant le développement de la polarité. Cette régulation post-traductionnelle est assurée par la machinerie de dégradation cytosolique appelée système ubiquitine-protéasome. Nous avons identifié certains acteurs de cette voie de régulation et commencé de montrer son importance pour le développement et le maintien de la polarité épithéliale. Les résultats les plus récents pointent vers un rôle de ces protéines dans les cancers épithéliaux qui se caractérisent toujours par une perte de la polarité cellulaire.
|
4 |
Etude structurale des petites protéines G : Rap2A dans un complexe non catalytique avec le GTP et Arf6 en complexe avec du GDPMenetrey, Julie 05 December 2000 (has links) (PDF)
Les petites protéines G sont des protéines capables de fixer du GDP ou du GTP, ce qui va induire des changements de conformation au sein de la protéine qui lui permettront d'interagir avec des partenaires cellulaires distincts, et ainsi de jouer un rôle "d'interrupteur moléculaire". Le cycle GDP/GTP des petites protéines G ne fonctionne pas seul, il est régulé par un facteur d'échange GDP/GTP (GEF) et une protéine activatrice de la GTPase (GAP). Les petites protéines G sont impliquées dans des processus cellulaires fondamentaux et divers, comme la différentiation et la prolifération cellulaire, l'organisation et la dynamique du cytosquelette, et les transports intracellulaires. Un certain nombre de structures de petite protéine G sont maintenant connues, et ont permis de définir le repliement général des petites protéines G et les changements de conformation au cours du cycle GDP/GTP. Le premier projet porte sur l'étude structurale par diffraction des rayons X de la petite protéine G Rap2A, homologue de l'oncogène Ras dans un complexe non catalytique avec le GTP. Cette étude a permis de mettre en évidence la présence d'une nouvelle interaction au niveau du site nucléotidique entre la tyrosine 32 et le phosphate gamma du GTP. Et, nous avons montré que les changements de conformation de Rap2A au cours de son cycle GDP/GTP sont caractérisés par deux transitions désordre/ordre. Le second projet porte sur l'étude structurale par diffraction des rayons X de la petite protéine G Arf6 en complexe avec du GDP. Cette étude a montré que deux protéines qui possèdent une forte homologie de séquence peuvent avoir des structures assez différentes pour être distinguées. Les principaux partenaires des formes GDP des petites protéines G sont les GEF, ce qui suggère une base structurale pour la spécificité des GEF. En conclusion, nous discutons des bases structurales qui permettent aux petites protéines G d'être distinguées les unes des autres.
|
5 |
Contrôle dynamique de la polarité chez Myxococcus xanthus : évolution et architecture d'un système chimiotactique modulaire / Dynamic control of cell polarity in Myxococcus xanthus : evolution and architecture of a modular chemosensory systemGuzzo, Mathilde 24 November 2015 (has links)
La bactérie Myxococcus xanthus forme des structures multicellulaires appelées corps fructifères pour résister à des conditions de carence nutritive. La formation de ces structures implique un système chimiotactique particulier, le système Frz, qui régule le changement de direction des cellules, provoqué par la relocalisation simultanée des deux appareils de motilité (A) et (S) d’un pôle à l’autre de la cellule. Au cours de ma thèse, j’ai travaillé sur la connexion entre le système chimiotactique Frz et ses protéines cibles MglAB dans le contrôle de l’inversion de la polarité. L’axe de polarité des cellules est établi par MglA, une petite protéine G de la famille Ras, qui constitue un embranchement vers la régulation des deux appareils de motilité au pôle avant, et son inhibiteur MglB localisé au pôle arrière. Nous avons montré qu’en interagissant directement et spécifiquement avec le cytosquelette, MglA contrôle l’assemblage et le désassemblage de la machinerie de motilité A. Par une approche évolutive, nous avons élucidé l’architecture modulaire du système Frz et l’implication de quatre domaines régulateurs pour connecter le système Frz aux protéines MglAB, filtrer et amplifier le signal. Nous proposons un mécanisme d’inversion de la polarité dans lequel l’action indépendante de deux RRs à chaque pôle de la cellule perturbe les interactions entre une petite protéine G et son inhibiteur apparenté pour convertir un axe de polarité stable en un oscillateur biochimique. La régulation de la direction de mouvement chez M. xanthus pourrait donc constituer un cas émergent de couplage entre des régulateurs de type procaryotes et eucaryotes. / The bacterium Myxococcus xanthus forms multicellular structures called fruiting bodies to resist to starvation conditions. Fruiting body formation implies a chemosensory-like system, the Frz system which regulates directional changes through the simultaneous pole-to-pole relocalization of two motility systems, (A) and (S). During my PhD, I have worked on the connection between the Frz chemosensory-like system and the downstream regulators MglA and MglB in the control of polarity inversion. The cell polarity axis is established by (i) a Ras-like small G protein, MglA, which constitutes a branch node in the regulation of A and S motility systems at the leading cell pole, and (ii) its cognate inhibitor MglB that localizes at the lagging cell pole. We showed that MglA interacts directly and specifically with the cytoskeleton to promote assembly and disassembly of the A-motility machinery. Using an evolutionary approach, we elucidated the modular architecture of the Frz system and the implication of four regulatory domains to (i) connect the Frz system to the MglAB proteins, (ii) filter and (iii) amplify the signal. We now propose a mechanism for polarity inversion in which the independent action of two response regulators at each cell pole perturbs the interactions between a small-G-protein and its cognate inhibitor to trigger the conversion of a stable polarity axis into a biochemical oscillator. The regulation of directional movement in M. xanthus is an interesting emergent coupling between prokaryotes and eukaryotes regulators.
|
Page generated in 0.0728 seconds