• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 35
  • 25
  • 10
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 207
  • 207
  • 38
  • 32
  • 29
  • 27
  • 25
  • 22
  • 22
  • 21
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Pipeline for Next Generation Sequencing data of phage displayed libraries to support affinity ligand discovery

Schleimann-Jensen, Ella January 2022 (has links)
Affinity ligands are important molecules used in affinity chromatography for purification of significant substances from complex mixtures. To find affinity ligands specific to important target molecules could be a challenging process. Cytiva uses the powerful phage display technique to find new promising affinity ligands. The phage display technique is a method run in several enrichment cycles. When developing new affinity ligands, a protein scaffold library with a diversity of up to 1010-1011 different protein scaffold variants is run through the enrichment cycles.  The result from the phage display rounds is screened for target molecule binding followed by sequencing, usually with one of the conventional screening methods ELISA or Biacore followed by Sanger sequencing. However, the throughput of these analyses are unfortunately very low, often with only a few hundred screened clones. Therefore, Next Generation Sequencing or NGS, has become an increasingly popular screening method for phage display libraries which generates millions of sequences from each phage display round. This creates a need for a robust data analysis pipeline to be able to interpret the large amounts of data.  In this project, a pipeline for analysis of NGS data of phage displayed libraries has been developed at Cytiva. Cytiva uses NGS as one of their screening methods of phage displayed protein libraries because of the high throughput compared to the conventional screening methods. The purpose is to find new affinity ligands for purification of essential substances used in drugs.  The pipeline has been created using the object-oriented programming language R and consists of several analyses covering the most important steps to be able to find promising results from the NGS data. With the developed pipeline the user can analyze the data on both DNA and protein sequence level and per position residue breakdown, as well as filter the data based on specific amino acids and positions. This gives a robust and thorough analysis which can lead to promising results that can be used in the development of novel affinity ligands for future purification products.
172

Applying Phage Display to Screen a Library of α1-Proteinase Inhibitor Mutants for Improved Thrombin Binding Activity

Scott, Benjamin M. 10 1900 (has links)
<p>α<sub>1</sub>-proteinase inhibitor (α<sub>1</sub>-PI) is the most abundant serine protease inhibitor (serpin) in plasma. The α<sub>1</sub>-PI M358R mutant exhibits greatly increased rates of thrombin inhibition compared to wild type α<sub>1</sub>-PI, which predominantly inhibits neutrophil elastase. M358R (P1) lies at the reactive centre (P1-P1’) bond of the reactive centre loop (RCL) of α<sub>1</sub>-PI, cleaved by cognate proteases as they become trapped in the serpin-type inhibitory complex. The relationship between RCL structure and serpin inhibitor function is incompletely understood and has not been subjected to saturation mutagenesis. α<sub>1</sub>-PI M358R is a less potent inhibitor of thrombin than natural thrombin-inhibitory serpins, suggesting room for engineered improvement into an antithrombotic protein drug.</p> <p>Phage display is a powerful tool for screening mutant protein libraries, but only one serpin (PAI-1) has previously been mutated and expressed in this manner. In this study the T7Select10-3b (Novagen) phage display system was used to express α<sub>1</sub>-PI variants and PAI-1, fused to the first 348 residues of the T7 10B coat protein. Following confirmation that α<sub>1</sub>-PI M358R retained inhibitory activity when fused to T7Select10-3b phage, this system was used to express a library of α<sub>1</sub>-PI mutant proteins with all possible codon combinations at positions P2 (P357) and P1 (M358) (441 mutants). The library was biopanned using a novel technique in order to amplify only the α<sub>1</sub>-PI P2P1 mutants capable of forming stable complexes with thrombin. The P357/M358R mutant was the only P2P1 mutant enriched, indicating that the α<sub>1</sub>-PI M358R protein has the optimal P2P1 sequence for thrombin inhibition.</p> <p>A second T7Select10-3b library of α<sub>1</sub>-PI mutant proteins was generated to identify the optimal sequence at positions P7 through to P3 (amino acids 352-356) for thrombin inhibition. The P2 and P1 positions were maintained at P357/M358R, while all possible codon combinations at positions P7 through to P3 were represented (>4.08 million mutants). The library was biopanned using the protocol developed for the P2P1 library, before sequences were inserted into an <em>E. coli</em> expression vector and α<sub>1</sub>-PI M358R P7-P3 mutants were screened for thrombin inhibitory activity. 80 individual colonies were screened, yielding 22 unique P7-P3 mutants with thrombin inhibitory activity greater than the M358R RCL sequence. The consensus observed in sequences with improved activity matched thrombin’s known substrate specificity and also general RCL trends: P7-Not Aromatic/P6-Hydrophobic/P5-T or S/P4-Hydrophobic/P3-Not Aromatic.</p> <p>Kinetic characterization of selected mutants with improved thrombin inhibitory activity yielded two mutants, P7-P3 sequence DITMA and AAFVS, with a second order rate constant of 1.0 x 10<sup>6</sup> M<sup>-1</sup>s<sup>-1</sup>. This represents a >2-fold increase in the rate of thrombin inhibition versus α<sub>1</sub>-PI M358R. Both the DITMA and AAFVS mutants were found to have a lower stoichiometry of inhibition compared to α<sub>1</sub>-PI M358R, indicating that an improved thrombin inhibitory mechanism was also enriched during biopanning.</p> <p>These findings suggest that based on the scaffold of the α<sub>1</sub>-PI protein, improved thrombin inhibitory activity can be engineered and selected via phage display. Additionally, this work represents a proof-of-principle for the application of this system to screen libraries of up to 10 million mutants in order to better engineer serpins towards a desired activity.</p> / Master of Health Sciences (MSc)
173

Selección y caracterización de anticuerpos recombinantes para fungicidas. Aplicación al desarrollo de técnicas inmunoanalíticas

Plana Andani, Emma 26 July 2010 (has links)
El objetivo principal de esta tesis consiste en la obtención de anticuerpos recombinantes frente a los fungicidas azólicos tetraconazol, hexaconazol e imazalil, y su aplicación en la determinación de residuos de estos fungicidas en muestras agroalimentarias. Para ello, en primer lugar, se han aplicado técnicas de biología molecular para la obtención de los fragmentos recombinantes scFv (single chain fragment variable) a partir del material genético de hibridomas productores de anticuerpos monoclonales frente a los fungicidas tetraconazol, hexaconazol e imazalil. Posteriormente, dichos fragmentos se han expresado en sistemas bacterianos empleando vectores de expresión plasmídicos. Por otro lado, se ha optimizado un sistema de cribado y selección de colonias bacterianas productoras de fragmentos de anticuerpos recombinantes capaces de reconocer a los plaguicidas en estudio. Este sistema está basado en ELISAs simultáneos, competitivos y no competitivos, de la fracción soluble del anticuerpo recombinante. Finalmente, en el caso de los anticuerpos frente a hexaconazol e imazalil, se ha aplicado un protocolo de enriquecimiento cíclico denominado panning, basado en la tecnología de presentación de moléculas proteicas en la superficie de fagos (phage display). De este modo, se han obtenido anticuerpos recombinantes a partir de cada hibridoma productor de anticuerpos monoclonales. Cada anticuerpo recombinante se ha expresado tanto en su forma de proteína libre (scFv) como en forma de proteína de fusión (scFv-pIII). De igual modo, se han empleado técnicas de biología molecular para la generación de bibliotecas de fragmentos recombinantes scFv a partir del material genético de linfocitos de ratones inmunizados frente a cada uno de los tres fungicidas. En este caso, se han optimizado las condiciones tanto de la etapa de construcción de bibliotecas como del posterior proceso de enriquecimiento por panning. / Plana Andani, E. (2010). Selección y caracterización de anticuerpos recombinantes para fungicidas. Aplicación al desarrollo de técnicas inmunoanalíticas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8477
174

In vivo imaging of the voltage-gated potassium channel Kv10.1 utilizing SPECT in combination with radiolabeled antibodies

Krüwel, Thomas 17 November 2015 (has links)
No description available.
175

Production of Porcine Single Chain Variable Fragment (SCFV) selected against a recombinant fragment of Porcine Reproductive and Respiratory Syndrome virus non structural protein 2

Koopman, Tammy L. January 1900 (has links)
Master of Science / Department of Diagnostic Medicine/Pathobiology / Richard 'Dick' Hesse / Carol Wyatt / Over the last two decades molecular laboratory techniques have enabled researchers to investigate the infection, replication and pathogenesis of viral disease. In the early eighties, Dr. George Smith developed a unique system of molecular selection. He showed that the fd bacteriophage genome could be manipulated to carry a sequence of DNA coding for a protein not contained in the phage genome. Infection of the recombinant bacteriophage or phagemid into a specific strain of the bacterium, Escherichia coli, produced progeny phage with the coded protein displayed as a fusion with the phage's coat protein. Antibody phage display utilizes the same technology with the DNA encoding an antibody fragment. The DNA insert can carry the information to produce either a single chain variable fragment (scFv) producing the heavy chain variable and light chain variable (VH-VL) portion or a Fab fragment which also contains the heavy chain constant 1 with the light chain constant (CH and CL) portion of an antibody. Screening an antibody phage display library has the possibility of producing an antibody not produced in the normal course of immune selection. This decade also saw the emergence of a viral disease affecting the porcine population. The Porcine Reproductive and Respiratory Syndrome virus (PRRSV) has been one of the most costly diseases affecting the pig producer. Molecular investigations found that PRRSV is a single, positive-stranded RNA virus which codes for five structural and 12-13 nonstructural proteins producing an enveloped, icosahedral virus. An interesting characteristic of PRRSV is the ability to produce infective progeny with genomic deletions, insertions and mutations within the nonstructural protein 2 (nsp2). With this knowledge, many researchers have produced marker vaccines containing fluorescent tags with the hope of developing a DIVA (Differentiate Infected from Vaccinated Animals) vaccine. In my Master‟s studies, I studied the techniques of antibody phage display technology and how to apply these methods to producing scFvs which recognize a recombinant PRRSV nsp2 fragment protein and the native protein during infection of MARC-145 cells.
176

Superantigen-like interaction of IVIG with antibody Fab fragments cloned by phage display technology

Osei, Awuku Kwabena 19 April 2002 (has links)
Therapeutische Erfolge von IVIG sind gut dokumentiert, aber die zu Grunde liegenden molekularen Mechanismen sind noch nicht vollständig erforscht. Molekulare Analysen unseres Labors über die Interaktion von IVIG mit Fabs von Patienten, die an einer autoimmunen Thrombozytopenie (ITP) leiden zeigten, dass die am häufigsten selektierten Fab von den V3-23 und V3-30 VH-Keimbahngenen abstammten. Eine weitere Studie mit IgG und IgM Phagen-Display Bibliotheken von einem gesunden Spender zeigten ebenfalls eine bevorzugte Reaktivierung von IVIG mit Fabs vom Ursprung der V3-23 und V3-30 Gene. Es konnte gefolgert werden, dass diese Interaktion von IVIG mit Fabs von diesen zwei VH-Genen weder alleine auf den Gesundheitsstatus des Spenders zurückzuführen war, noch auf eine zuvor erfolgte Behandlung mit IVIG. Diese Dissertation wurde unter Verwendung der Phagen-Display Technologie unternommen, um die molekulare Interaktion von IVIG mit Antikörpern zu erforschen, die von einem Patienten kloniert wurden, der an einem systemischen Lupus erythematodes und rheumatischem Fieber leidet. Die Resultate waren mit den früheren Studien zu vergleichen, insbesondere mit den Daten eines Patienten, der zu der ITP einen Lupus entwickelte. 23 Fabs, welche 7 unabhängige Klone repräsentierten, wurden isoliert. Im Gegensatz zu von Patienten mit ITP abstammenden Klonen reagierte keines von den in dieser Studie selektierten Fabs mit Thrombozyten. Die über IVIG gebundene Fab-Phagen stammten hierbei ausschließlich von den V3-23 und V3-30 VH-Genen ab. Darüber hinaus wurde beobachtet, dass von diesen Fabs verschiedene CDR3 Regionen einschließlich verschiedenen D- und JH-Gensegmenten benutzt wurden. Die Ergebnisse zeigten weiterhing, dass die Bindung von IVIG an die Fabs unabhängig von der Leichten Kette war. Ihrem Keimbahngen-Ursprung entsprechend hatten die Fabs Aminosäuren an Positionen in den FR1, FR3 und im 3'-Ende von CDR2, die dafür bekannt sind, dass sie für die Bindung des B-Zell-Superantigens Staphylococcus Protein A (SpA) essentiell sind. Es wurde gezeigt, dass sich zwar einige von den Fabs stark an SpA banden, aber keine Korrelation in der Intensität zur Bindung mit IVIG vorlag. Einige Fabs zeigten eine schwache Bindung an HIV gp120, einem anderen B-Zell-Superantigen. Zusammenfassend lässt sich aus der vorliegenden Studie und den vorherigen Ergebnissen schließen, dass ein Anteil von IVIG wie ein B-Zellen Superantigen funktionieren könnte, das für die Bildung und Regulation des normalen B-Zellen Repertoires wichtig ist. Der Bindungsmechanismus scheint ähnlich, aber nicht identisch mit dem der anderen getesteten B-Zellen-Superantigene zu sein. / The beneficial therapeutic effects of IVIG are well documented, but the underlying molecular mechanisms are not fully understood. Recent investigations from our laboratory into the molecular analysis of Fabs bound by IVIG from patients suffering from autoimmune thrombocytopenia revealed that the most frequently selected Fabs originated from the V3-23 and V3-30 VH germline genes. A subsequent study with IgG and IgM phage display libraries from a healthy donor also demonstrated a preferential reactivity of IVIG to Fabs of V3-23 and V3-30 origin. That study revealed that the unique reactivity of IVIG to Fabs of these two VH gene loci was not restricted to the autoimmune nature of the donors, neither to previous treatment with IVIG. One of the thrombocytopenia patients developed lupus. This study was undertaken to study the molecular interaction of IVIG with antibodies selected from a patient suffering from systemic lupus erythematosus and rheumatic fever using phage display technology, and to compare the results with the previous studies. Twenty-three Fabs representing seven independent clones were isolated. In contrast to ITP-derived clones, none of the Fabs selected in this study reacted with platelets. The Fab phages bound by IVIG were sequenced in order to determine their VH gene usage and clonal relatedness. V3-23 and V3-30 VH genes were found to be exclusively utilized by the Fab phages bound by IVIG. Moreover, different CDR3 regions including different D and JH gene segments were observed to be used by these Fabs. The results further showed that the binding of IVIG to the Fabs was independent of the light chain since different light chains were observed to be associated with the VH3 immunoglobulins. Detailed sequence analysis of the Fabs revealed the presence of amino acid residues at positions within FR1, FR3, and the 3' end of CDR2 that are known to be contacted by the B cell superantigen Staphylococcus protein A (SpA). Some of the Fabs were shown to bind strongly to SpA, but there was no correlation with the binding-intensity to IVIG. Some bound very weakly to HIV gp120, another B cell superantigen. This study, together with previous results, suggests that a subset of IVIG may function as a B cell superantigen that may significantly shape the B cell repertoire. The binding mechanism appears to be similar but not identical to the other tested B cell superantigens.
177

Création par évolution dirigée de protéines artificielles en alternatives aux anticorps / Design, production and molecular structure of a new family of artificial Alpha-helicoïdal Repeat Proteins (αRep) as alternative to antibodies.

Guellouz, Asma 25 October 2012 (has links)
Les travaux décrits dans ce mémoire ont pour objectif d’une part le développementd’une nouvelle famille de protéines artificielles et d’autre part la création de nouveaux sitesde fixation spécifiques dans ces protéines. L’objectif général était de développer une approchegénérale permettant d’obtenir rapidement des protéines reconnaissant toute macromoléculecible choisie. On peut voir ces protéines artificielles spécifiques comme des sortes d’anticorpsartificiels pour leur spécificité et leur affinité mais dont les propriétés physiques : stabilité,solubilité, efficacité d’expression, insensibilité à l’agrégation sont nettement plus favorablesque celles des anticorps et de leur dérivés.Le premier chapitre, présente la conception et la construction d’une bibliothèque deprotéines artificielles dite de première génération où les protéines sont formées par larépétition d’un motif idéalisé à partir d’une famille de motifs naturels appelés HEAT repeats.Toutes les protéines de la bibliothèque, dénommées αRep, sont conçues pour avoir la mêmearchitecture générale mais diffèrent les unes des autres par le nombre de motifs et par laséquence dans certaines positions rendues variables au sein de chaque motif. Cette banquenous a permis de valider l’architecture αRep choisie : Les protéines s’expriment sous formesoluble, sont très stables et adoptent la structure secondaire et tertiaire attendue quel que soitla séquence des positions hypervariables. Le second chapitre présente alors les approchessuivies pour l’amélioration de la qualité et de la diversité de la bibliothèque et a conduit à laconstruction d’une bibliothèque d’αRep de deuxième génération. Cette dernière bibliothèque(2 .1) repose sur le même schéma général mais contient une diversité ayant été optimiséelors de la conception puis améliorée expérimentalement par une procédure dite deFiltration/shuffling. Cette bibliothèque très diverse (1.7*109 clones indépendants) a été alorsexploitée pour y rechercher, par des méthodes d’exposition sur phages, de nouvelles αRepreconnaissant des protéines cibles préalablement choisies. L’ensemble des résultats montretrès clairement que des αRep reconnaissant spécifiquement, avec une affinité élevée, desprotéines cibles choisies arbitrairement peuvent être effectivement obtenues. Les structurestridimensionnelles de plusieurs complexes formés entre les αRep et leur cible a été résoluepermet de comprendre la nature et l’organisation précise de ces capacités de reconnaissancemoléculaire nouvellement créées. / The main objective of this work was to design, produce and characterize a new familyof artificial proteins and to introduce new tailored specific binding sites within this structuralframework. Our general goal was to develop method allowing to rapidly generate newprotein binding specifically to any predefined target macromolecule. Binders based onartificial proteins can be viewed as antibody-like molecules but due to their different structurehave more favorable physical properties (expression, solubility, folding efficiency, stability)than antibodies and derivatives.The design and experimental assembly of a first generation artificial protein library isdescribed in part I. Proteins of this library are made by a repetition of a motif idealized from afamily of natural protein repeats (HEAT repeat). These artificial proteins, named αRep, havethe same general fold but the number of the repeated motif vary from protein to protein.Furthermore, a set of positions of each motif is highly variable within the library. Proteinisolated from this first generation library are well expressed, soluble, extremely stable andwere shown to have the designed secondary and tertiary structure.The methods used to improve the diversity and the experimental quality of the protein libraryare described in the second part of this thesis and have allowed us to create a secondgeneration αRep library. This library is based on the same general scheme but its diversitywas optimized by an improved design and experimental procedures known as filtration/shuffling.This highly diverse second generation library (1.7*109 independent clones) was usedto select variants with tailored binding specificities using phage display method. The resultsclearly show that news αReps binding tightly and specifically a range of arbitrarily definedprotein targets can be efficiently selected. The tertiary structure of complexes between αRepand their cognate target molecule were solved and allow to analyze the nature and detailedorganization of this newly engineered molecular recognition capacities.
178

Rational and combinatorial genetic engineering approaches for improved recombinant protein production and purification

Bandmann, Nina January 2007 (has links)
The bacterium Escherichia coli (E. coli) is in many situations an ideal host for production of recombinant proteins, since it generally provides a rapid and economical means to achieve sufficiently high product quantities. However, there are several factors that may limit this host’s ability to produce large amounts of heterologous proteins in a soluble and native form. For many applications a high purity of the recombinant protein is demanded, which implies a purification strategy where the product efficiently can be isolated from the complex milieu of host cell contaminants. In this thesis, different strategies based on both rational and combinatorial genetic engineering principles have been investigated, aiming at improving and facilitating recombinant E. coli protein production and purification. One objective was to improve the PEG/salt aqueous two-phase system (ATPS) purification process of the lipase cutinase, by increasing the selectivity of the protein for the system top-phase. Peptide tags, with varying properties, were designed and genetically fused to the C-terminal end of ZZ-cutinase. Greatly increased partitioning values were observed for purified protein variants fused to tryptophan containing peptide tags, particularly a (WP)4 peptide. The partitioning properties of the ZZ-cutinase-(WP)4 protein were also retained when added to the ATPS directly from an E. coli total cell disintegrate, emphasizing the applicability of this genetic engineering strategy for primary protein purification in ATPSs. Further on, a combinatorial library approach using phage display technology was investigated as a tool for identification of peptide tags capable of improving partitioning properties of ZZ-cutinase in an ATPS. Repeated ATPS-based partitioning-selection cycles of a large phagemid (pVIII) peptide library, resulted in isolation of phage particles preferentially decorated with peptides rich in tyrosine and proline residues. Both a peptide corresponding to a phage library derived peptide sequence as well as peptides designed based on information of amino acid appearance frequencies in later selection rounds, were shown to improve partitioning several-fold when genetically fused to the C-terminal end of ZZ-cutinase. From the two- to four–fold increased production yields observed for these fusion proteins compared to ZZ-cutinase-(WP)4, it was concluded that the selection system used allowed for selection of desired peptide properties related to both partitioning and E. coli protein production parameters. Bacterial protein production is affected by several different mRNA and protein sequence-related features. Attempts to address single parameters in this respect are difficult due to the inter-dependence of many features, for example between codon optimization and mRNA secondary structure effects. Two combinatorial expression vector libraries (ExLib1 and ExLib2) were constructed using a randomization strategy that potentially could lead to variations in many of these sequence-related features and which would allow a pragmatic search of vector variants showing positive net effects on the level of soluble protein production. ExLib1 was constructed to encode all possible synonymous codons of an eight amino acid N-terminal extension of protein Z, fused to the N-terminal of an enhanced green fluorescent reporter protein (EGFP). In ExLib2, the same eight positions were randomized using an (NNG/T) degeneracy code, which could lead to various effects on both the nucleotide and protein level, through the introduction of nucleotide sequences functional as e.g. alternative ribosome binding or translation initiation sites or as translated codons for an Nterminal extension of the target protein by a peptide sequence. Flow cytometric analyses and sorting of library cell cultures resulted in isolation of clones displaying several-fold increases in whole cell fluorescence compared to a reference clone. SDS-PAGE and western blot analyses verified that this was a result of increases (up to 24-fold) in soluble intracellular ZEGFP product protein content. Both position specific codon bias effects and the appearance of new ribosomal binding sites in the library sequences were concluded to have influenced the protein production. To explore the possibility of applying the same combinatorial library strategy for improving soluble intracellular production of heterologous proteins proven difficult to express in E. coli, three proteins with either bacterial (a transcriptional regulator (DntR)) or human (progesterone receptor ligand binding domain (PRLBD) and 11-β Hydroxysteroid dehydrogenase type I (11-β)) origin, were cloned into the ExLib2 library. Flow cytometric sorting of libraries resulted in isolation of DntR library clones showing increased soluble protein production levels and PR-LBD library clones with up to ten-fold increases in whole cell fluorescence, although the product under these conditions co-separated with the insoluble cell material. / QC 20100623
179

Interaction engineered three-helix bundle domains for protein recovery and detection

Alm, Tove January 2010 (has links)
HTML clipboard The great advances in DNA technology, e.g. sequencing and recombinant DNA techniques, have given us the genetic information and the tools needed to effectively produce recombinant proteins. Recombinant proteins are valuable means in biotechnological applications and are also emerging as alternatives in therapeutic applications. Traditionally, monoclonal antibodies have been the natural choice for biotechnological and therapeutic applications due to their ability to bind a huge range of different molecules and their natural good affinity. However, the large size of antibodies (150 kDa) limits tissue penetration and the recombinant expression is complicated. Therefore, alternative binders with smaller sizes have been derived from antibodies and alternative scaffolds. In this thesis, two structurally similar domains, Zbasic and ABDz1, have been used as purification tags in different contexts. They are both three-helical bundles and derived from bacterial surface domains, but share no sequence homology. Furthermore, by redesign of the scaffold used for ABDz1, a molecule intended for drug targeting with extended in-vivo half-life has been engineered. In Papers I and II, the poly-cationic tag Zbasic is explored and evaluated. Paper I describes the successful investigation of Zbasic as a purification handle under denaturating conditions. Moreover, Zbasic is evaluated as an interaction domain in matrixassisted refolding. Two different proteins were successfully refolded using the same setup without individual optimization. In Paper II, Zbasic is further explored as a purification handle under non-native conditions in a multi-parallel setup. In total, 22 proteins with varying characteristics are successfully purified using a multi-parallel protein purification protocol and a robotic system. Without modifications, the system can purify up to 60 proteins without manual handling. Paper I and II clearly demonstrate that Zbasic can be used as an interaction domain in matrix-assisted refolding and that it offers a good alternative to the commonly used His6-tag under denaturating conditions. In paper III, the small bifunctional ABDz1 is selected from a phage display library. Endowed with two different binding interfaces, ABDz1 is capable of binding both the HSA-sepharose and the protein A-derived MabSelect SuRe-matrix. The bifunctionality of the domain is exploited in an orthogonal affinity setup. Three target proteins are successfully purified using the HSA-matrix and the MabSelect SuRe-matrix. Furthermore, the purity of the target proteins is effectively improved by combining the two chromatographic steps. Thus, paper III shows that the small ABDz1 can be used as an effective purification handle and dual affinity tag without target specific optimization. Paper IV describes the selection and affinity maturation of small bispecific drug-targeting molecules. First generation binders against tumor necrosis factor-α are selected using phage display. Thereafter on-cell surface display and flow cytometry is used to select second-generation binders. The binding to tumor necrosis factor-α is improved up to 30 times as compared to the best first generation binder, and a 6-fold improvement of the binding strength was possible with retained HSA affinity. Paper III and IV clearly demonstrate that dual interaction surfaces can successfully be grafted on a small proteinaceous domain, and that the strategy in paper IV can be used for dual selection of bifunctional binders. / <p>QC20100610</p>
180

Bioprocess Development For Thermostable Glucose Isomerase Production

Angardi, Vahideh 01 December 2011 (has links) (PDF)
In this study, process development for glucose isomerase (GI) was aimed. In this context, firstly, thermostable xyl genes, PCR amplified from Thermus thermophilus and Pyrococcus furiosus cells, were recombined to the E.coli BL21 (DE3) and P.pastoris strains, respectively. But significant increase in the term of GI activity compared with wild type cells only detected in recombinant E.coli strain so this strain was selected for further experiments. Then, the effect of different natural and artificial inducers on the production of rGI under control of LacUV5 promoter was investigated in laboratory-scale bioreactors. Lactose was shown to be more efficient in the term of operon induction for long time bioprocesses. Thereafter, in order to increase thermostable rGI production rate, to achieve high cell density culture of E.coli BL21 (DE3) pLysS pRSETA::xylT as well as to evade acetate accumulation, the effect of exponential feeding strategy of carbon source on the production of thermostable GI enzyme, cell concentration and acetate formation by recombinant E.coli BL21 (DE3) pLysS was investigated at four sets of fed-batch bioreactor experiments at three different predetermined specific growth rates 0.1 h-1 (M-0.1), 0.15 h-1 (M-0.15), 0.2 h-1 (M-0.2) and a glucose based exponential feeding at specific growth rate of 0.15 h-1(G-0.15) were performed by recombinant E.coli BL21 (DE3) pLysS cells. The highest biomass was obtained in M-0.15 condition as 9.6 kg m&minus / 3 at t=32 h and the highest rGI activity was achieved in M-0.1 operation as A=16399 U L-1 at t=32 h of bioprocess. Moreover, peptide ligand with specific affinity toward histidin-tag peptide was selected by phage display technology. Isothermal titration calorimetry and surface plasmon resonance analyses were carried out to determine peptide-peptide interaction properties.

Page generated in 0.1079 seconds