• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 2
  • 2
  • Tagged with
  • 53
  • 25
  • 17
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Pharmacometric Models for Antibacterial Agents to Improve Dosing Strategies

Nielsen, Elisabet I January 2011 (has links)
Antibiotics are among the most commonly prescribed drugs. Although the majority of these drugs were developed several decades ago, optimal dosage (dose, dosing interval and treatment duration) have still not been well defined. This thesis focuses on the development and evaluation of pharmacometric models that can be used as tools in the establishment of improved dosing strategies for novel and already clinically available antibacterial drugs. Infectious diseases are common causes of death in preterm and term newborn infants. A population pharmacokinetic (PK) model for gentamicin was developed based on data from a prospective study. Body-weight and age (gestational and post-natal age) were found to be major factors contributing to variability in gentamicin clearance and therefore important patient characteristics to consider for improved dosing regimens. A semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) model was also developed, to characterize in vitro bacterial growth and killing kinetics following exposure to six antibacterial drugs, representing a broad selection of mechanisms of action and PK as well as PD characteristics. The model performed well in describing a wide range of static and dynamic drug exposures and was easily applied to other bacterial strains and antibiotics. It is, therefore, likely to find application in early drug development programs. Dosing of antibiotics is usually based on summary endpoints such as the PK/PD indices. Predictions based on the PKPD model showed that the commonly used PK/PD indices were well identified for all investigated drugs, supporting that models based on in vitro data can be predictive of antibacterial effects observed in vivo. However, the PK/PD indices were sensitive to the study conditions and were not always consistent between patient populations. The PK/PD indices may therefore extrapolate poorly across sub-populations. A semi-mechanistic modeling approach, utilizing the type of models described here, may thus have higher predictive value in a dose optimization tailored to specific patient populations.
32

Application of Mixed-Effect Modeling to Improve Mechanistic Understanding and Predictability of Oral Absorption

Bergstrand, Martin January 2011 (has links)
Several sophisticated techniques to study in vivo GI transit and regional absorption of pharmaceuticals are available and increasingly used. Examples of such methods are Magnetic Marker Monitoring (MMM) and local drug administration with remotely operated capsules. Another approach is the paracetamol and sulfapyridine double marker method which utilizes observed plasma concentrations of the two substances as markers for GI transit. Common for all of these methods is that they generate multiple types of observations e.g. tablet GI position, drug release and plasma concentrations of one or more substances. This thesis is based on the hypothesis that application of mechanistic nonlinear mixed-effect models could facilitate a better understanding of the interrelationship between such variables and result improved predictions of the processes involved in oral absorption. Mechanistic modeling approaches have been developed for application to data from MMM studies, paracetamol and sulfapyridine double marker studies and for linking in vitro and in vivo drug release. Models for integrating information about tablet GI transit, in vivo drug release and drug plasma concentrations measured in MMM studies was outlined and utilized to describe drug release and absorption properties along the GI tract for felodipine and the investigational drug AZD0837. A mechanistic link between in vitro and in vivo drug release was established by estimation of the mechanical stress in different regions of the GI tract in a unit equivalent to rotation speed in the in vitro experimental setup. The effect of atropine and erythromycin on gastric emptying and small intestinal transit was characterized with a semi-mechanistic model applied to double marker studies in fed and fasting dogs. The work with modeling of in vivo drug absorption has highlighted the need for, and led to, further development of mixed-effect modeling methodology with respect to model diagnostics and the handling of censored observations.
33

Modelling and Simulation to Improve Antimalarial Therapy

Lohy Das, Jesmin Permala January 2017 (has links)
The introduction of artemisinin-based combination therapy (ACT) substantially reduced malaria-related mortality and morbidity during the past decade. Despite the widespread use of ACT, there is still a considerable knowledge gap with regards to safety, efficacy and pharmacokinetic properties of these drugs, particularly in vulnerable populations like children and pregnant women. In addition, there is growing evidence of widespread artemisinin-resistance across the Greater Mekong Subregion. Expedited delivery of novel antimalarial drugs with different mechanisms of action to the clinical setting is still far off; therefore, it is crucial to improve the use of existing antimalarial drugs for optimal outcome in order to prolong their therapeutic life span. This thesis focuses on utilizing pharmacometric tools to support this effort for malaria prevention and treatment. An extensive simulation framework was used to explore alternative malaria chemopreventive dosing regimens of a commonly used ACT, dihydroartemisinin-piperaquine. Different monthly and weekly dosing regimens were evaluated and this allowed an understanding of the interplay between adherence, loading dose and malaria incidence. A weekly dosing regimen substantially improved the prevention effect and was less impacted by poor adherence. This is also expected to reduce selection pressure for development of resistance to piperaquine. Population pharmacokinetics-pharmacodynamic models were developed for artesunate and the active metabolite dihydroartemisinin, effect on parasite clearance, in patients with artemisinin-resistant and -sensitive malaria infections in Southeast Asia. The modeling identified an association between parasite density and drug bioavailability. It predicted the presence of high levels of artemisinin resistant infection among patients in Cambodia and its spread into Myanmar. A nomogram to identify patients with artemisinin resistant infections was developed. Furthermore, the model was used to demonstrate the need for extended treatment duration to treat patients with artemisinin resistant infections. A population pharmacokinetic model developed from data on pregnant women in East Africa allowed further understanding of artemether-lumefantrine exposure in pregnant populations. It also suggested that the lumefantrine exposure in this population is not compromised. In summary, the results presented in this thesis demonstrate the value of pharmacometric approaches for improving antimalarial drug treatment and prevention. This ultimately contributes to overcoming the prevailing challenges to malaria control.
34

Novel pharmacometric methods to improve clinical drug development in progressive diseases / Place de nouvelles approches pharmacométriques pour optimiser le développement clinique des médicaments dans le secteur des maladies progressives

Buatois, Simon 26 November 2018 (has links)
Suite aux progrès techniques et méthodologiques dans le secteur de la modélisation, l’apport de ces approches est désormais reconnu par l’ensemble des acteurs de la recherche clinique et pourrait avoir un rôle clé dans la recherche sur les maladies progressives. Parmi celles-ci les études pharmacométriques (PMX) sont rarement utilisées pour répondre aux hypothèses posées dans le cadre d’études dites de confirmation. Parmi les raisons évoquées, les analyses PMX traditionnelles ignorent l'incertitude associée à la structure du modèle lors de la génération d'inférence statistique. Or, ignorer l’étape de sélection du modèle peut aboutir à des intervalles de confiance trop optimistes et à une inflation de l’erreur de type I. Pour y remédier, nous avons étudié l’apport d’approches PMX innovantes dans les études de choix de dose. Le « model averaging » couplée à un test du rapport de « vraisemblance combiné » a montré des résultats prometteurs et tend à promouvoir l’utilisation de la PMX dans les études de choix de dose. Pour les études dites d’apprentissage, les approches de modélisation sont utilisées pour accroitre les connaissances associées aux médicaments, aux mécanismes et aux maladies. Dans cette thèse, les mérites de l’analyse PMX ont été évalués dans le cadre de la maladie de Parkinson. En combinant la théorie des réponses aux items à un modèle longitudinal, l’analyse PMX a permis de caractériser adéquatement la progression de la maladie tout en tenant compte de la nature composite du biomarqueur. Pour conclure, cette thèse propose des méthodes d’analyses PMX innovantes pour faciliter le développement des médicaments et/ou les décisions des autorités réglementaires. / In the mid-1990, model-based approaches were mainly used as supporting tools for drug development. Restricted to the “rescue mode” in situations of drug development failure, the impact of model-based approaches was relatively limited. Nowadays, the merits of these approaches are widely recognised by stakeholders in healthcare and have a crucial role in drug development for progressive diseases. Despite their numerous advantages, model-based approaches present important drawbacks limiting their use in confirmatory trials. Traditional pharmacometric (PMX) analyses relies on model selection, and consequently ignores model structure uncertainty when generating statistical inference. The problem of model selection is potentially leading to over-optimistic confidence intervals and resulting in a type I error inflation. Two projects of this thesis aimed at investigating the value of innovative PMX approaches to address part of these shortcomings in a hypothetical dose-finding study for a progressive disorder. The model averaging approach coupled to a combined likelihood ratio test showed promising results and represents an additional step towards the use of PMX for primary analysis in dose-finding studies. In the learning phase, PMX is a key discipline with applications at every stage of drug development to gain insight into drug, mechanism and disease characteristics with the ultimate goal to aid efficient drug development. In this thesis, the merits of PMX analysis were evaluated, in the context of Parkinson’s disease. An item-response theory longitudinal model was successfully developed to precisely describe the disease progression of Parkinson’s disease patients while acknowledging the composite nature of a patient-reported outcome. To conclude, this thesis enhances the use of PMX to aid efficient drug development and/or regulatory decisions in drug development.
35

Automatic Development of Pharmacokinetic Structural Models

Hamdan, Alzahra January 2022 (has links)
Introduction: The current development strategy of population pharmacokinetic models is a complex and iterative process that is manually performed by modellers. Such a strategy is time-demanding, subjective, and dependent on the modellers’ experience. This thesis presents a novel model building tool that automates the development process of pharmacokinetic (PK) structural models. Methods: Modelsearch is a tool in Pharmpy library, an open-source package for pharmacometrics modelling, that searches for the best structural model using an exhaustive stepwise search algorithm. Given a dataset, a starting model and a pre-specified model search space of structural model features, the tool creates and fits a series of candidate models that are then ranked based on a selection criterion, leading to the selection of the best model. The Modelsearch tool was used to develop structural models for 10 clinical PK datasets (5 orally and 5 i.v. administered drugs). A starting model for each dataset was generated using the assemblerr package in R, which included a first-order (FO) absorption without any absorption delay for oral drugs, one-compartment disposition, FO elimination, a proportional residual error model, and inter-individual variability on the starting model parameters with a correlation between clearance (CL) and central volume of distribution (VC). The model search space included aspects of absorption and absorption delay (for oral drugs), distribution and elimination. In order to understand the effects of different IIV structures on structural model selection, five model search approaches were investigated that differ in the IIV structure of candidate models: 1. naïve pooling, 2. IIV on starting model parameters only, 3. additional IIV on mean delay time parameter, 4. additional diagonal IIVs on newly added parameters, and 5. full block IIVs. Additionally, the implementation of structural model selection in the workflow of the fully automatic model development was investigated. Three strategies were evaluated: SIR, SRI, and RSI depending on the development order of structural model (S), IIV model (I) and residual error model (R). Moreover, the NONMEM errors encountered when using the tool were investigated and categorized in order to be handled in the automatic model building workflow. Results: Differences in the final selected structural models for each drug were observed between the five different model search approaches. The same distribution components were selected through Approaches 1 and 2 for 6/10 drugs. Approach 2 has also identified an absorption delay component in 4/5 oral drugs, whilst the naïve pooling approach only identified an absorption delay model in 2 drugs. Compared to Approaches 1 and 2, Approaches 3, 4 and 5 tended to select more complex models and more often resulted in minimization errors during the search. For the SIR, SRI and RSI investigations, the same structural model was selected in 9/10 drugs with a significant higher run time in RSI strategy compared to the other strategies. The NONMEM errors were categorized into four categories based on the handling suggestions which is valuable to further improve the tool in its automatic error handling. Conclusions: The Modelsearch tool was able to automatically select a structural model with different strategies of setting the IIV model structure. This novel tool enables the evaluation of numerous combinations of model components, which would not be possible using a traditional manual model building strategy. Furthermore, the tool is flexible and can support multiple research investigations for how to best implement structural model selection in a fully automatic model development workflow.
36

Pharmacokinetics and pharmacodynamics of antimalarial drugs in pregnant women

Kloprogge, Frank Lodewijk January 2013 (has links)
Malaria is the most important parasitic disease in man and it kills approximately 2,000 people each day. Pregnant women are especially vulnerable to malaria with increased incidence and mortality rates. There are indications that pregnancy alters the pharmacokinetic properties of many antimalarial drugs. This is worrisome as lower drug exposures might result in lowered efficacy and lower drug exposures can also accelerate the development and spread of resistant parasites. The aim of this research was to study the pharmacokinetics and pharmacodynamics of the most commonly used drugs for the treatment of uncomplicated Plasmodium falciparum malaria during the second and third trimester of pregnancy using a pharmacometric approach. This thesis presents a number of important findings that increase the current knowledge of antimalarial drug pharmacology and that may have an impact in terms of drug efficacy and resistance. (1) Lower lumefantrine plasma concentrations at day 7 were evident in pregnant women compared to that in non-pregnant patients. Subsequent in-silico simulations with the final pharmacokinetic-pharmacodynamic lumefantrine/desbutyl-lumefantrine model showed a decreased treatment failure rate after a proposed extended artemether-lumefantrine treatment. (2) Dihydroartemisinin exposure (after intravenous and oral administration of artesunate) was lower during pregnancy compared to that in women 3 months post-partum (same women without malaria). Consecutive in-silico simulations with the final model showed that the underexposure of dihydroartemisinin during pregnancy could be compensated by a 25% dose increase. (3) Artemether/dihydroartemisinin exposure in pregnant women was also lower compared to literature values in non-pregnant patients. This further supports the urgent need for a study in pregnant women with a non-pregnant control group. (4) Quinine pharmacokinetics was not affected by pregnancy trimester within the study population and a study with a non-pregnant control group is needed to evaluate the absolute effects of pregnancy. (5) Finally, a data-dependent power calculation methodology using the log likelihood ratio test was successfully used for sample size calculations of mixed pharmacokinetic study designs (i.e. sparsely and densely sampled patients). Such sample size calculations can contribute to a better design of future pharmacokinetic studies. In conclusion, this thesis showed lower exposures for drugs used to treat uncomplicated Plasmodium falciparum malaria during the second and third trimester of pregnancy. More pharmacokinetic studies in pregnant women with a non-pregnant control group are urgently needed to confirm the current findings and to enable an evidence-based dose optimisation. The data-dependent power calculation methodology using the log likelihood ratio test can contribute to an effective design of these future pharmacokinetic studies.
37

Pharmacometrics of neuromuscular blocking agents in anesthetized patients and animals : impact of dose and intravascular mixing phase

Chen, Chunlin January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
38

Longitudinal Models for Quantifying Disease and Therapeutic Response in Multiple Sclerosis

Novakovic, Ana M. January 2017 (has links)
Treatment of patients with multiple sclerosis (MS) and development of new therapies have been challenging due to the disease complexity and slow progression, and the limited sensitivity of available clinical outcomes. Modeling and simulation has become an increasingly important component in drug development and in post-marketing optimization of use of medication. This thesis focuses on development of pharmacometric models for characterization and quantification of the relationships between drug exposure, biomarkers and clinical endpoints in relapse-remitting MS (RRMS) following cladribine treatment. A population pharmacokinetic model of cladribine and its main metabolite, 2-chloroadenine, was developed using plasma and urine data. The renal clearance of cladribine was close to half of total elimination, and was found to be a linear function of creatinine clearance (CRCL). Exposure-response models could quantify a clear effect of cladribine tablets on absolute lymphocyte count (ALC), burden of disease (BoD), expanded disability status scale (EDSS) and relapse rate (RR) endpoints. Moreover, they gave insight into disease progression of RRMS. This thesis further demonstrates how integrated modeling framework allows an understanding of the interplay between ALC and clinical efficacy endpoints. ALC was found to be a promising predictor of RR. Moreover, ALC and BoD were identified as predictors of EDSS time-course. This enables the understanding of the behavior of the key outcomes necessary for the successful development of long-awaited MS therapies, as well as how these outcomes correlate with each other. The item response theory (IRT) methodology, an alternative approach for analysing composite scores, enabled to quantify the information content of the individual EDSS components, which could help improve this scale. In addition, IRT also proved capable of increasing the detection power of potential drug effects in clinical trials, which may enhance drug development efficiency. The developed nonlinear mixed-effects models offer a platform for the quantitative understanding of the biomarker(s)/clinical endpoint relationship, disease progression and therapeutic response in RRMS by integrating a significant amount of knowledge and data.
39

Covariate Model Building in Nonlinear Mixed Effects Models

Ribbing, Jakob January 2007 (has links)
<p>Population pharmacokinetic-pharmacodynamic (PK-PD) models can be fitted using nonlinear mixed effects modelling (NONMEM). This is an efficient way of learning about drugs and diseases from data collected in clinical trials. Identifying covariates which explain differences between patients is important to discover patient subpopulations at risk of sub-therapeutic or toxic effects and for treatment individualization. Stepwise covariate modelling (SCM) is commonly used to this end. The aim of the current thesis work was to evaluate SCM and to develop alternative approaches. A further aim was to develop a mechanistic PK-PD model describing fasting plasma glucose, fasting insulin, insulin sensitivity and beta-cell mass.</p><p>The lasso is a penalized estimation method performing covariate selection simultaneously to shrinkage estimation. The lasso was implemented within NONMEM as an alternative to SCM and is discussed in comparison with that method. Further, various ways of incorporating information and propagating knowledge from previous studies into an analysis were investigated. In order to compare the different approaches, investigations were made under varying, replicated conditions. In the course of the investigations, more than one million NONMEM analyses were performed on simulated data. Due to selection bias the use of SCM performed poorly when analysing small datasets or rare subgroups. In these situations, the lasso method in NONMEM performed better, was faster, and additionally validated the covariate model. Alternatively, the performance of SCM can be improved by propagating knowledge or incorporating information from previously analysed studies and by population optimal design.</p><p>A model was also developed on a physiological/mechanistic basis to fit data from three phase II/III studies on the investigational drug, tesaglitazar. This model described fasting glucose and insulin levels well, despite heterogeneous patient groups ranging from non-diabetic insulin resistant subjects to patients with advanced diabetes. The model predictions of beta-cell mass and insulin sensitivity were well in agreement with values in the literature.</p>
40

Covariate Model Building in Nonlinear Mixed Effects Models

Ribbing, Jakob January 2007 (has links)
Population pharmacokinetic-pharmacodynamic (PK-PD) models can be fitted using nonlinear mixed effects modelling (NONMEM). This is an efficient way of learning about drugs and diseases from data collected in clinical trials. Identifying covariates which explain differences between patients is important to discover patient subpopulations at risk of sub-therapeutic or toxic effects and for treatment individualization. Stepwise covariate modelling (SCM) is commonly used to this end. The aim of the current thesis work was to evaluate SCM and to develop alternative approaches. A further aim was to develop a mechanistic PK-PD model describing fasting plasma glucose, fasting insulin, insulin sensitivity and beta-cell mass. The lasso is a penalized estimation method performing covariate selection simultaneously to shrinkage estimation. The lasso was implemented within NONMEM as an alternative to SCM and is discussed in comparison with that method. Further, various ways of incorporating information and propagating knowledge from previous studies into an analysis were investigated. In order to compare the different approaches, investigations were made under varying, replicated conditions. In the course of the investigations, more than one million NONMEM analyses were performed on simulated data. Due to selection bias the use of SCM performed poorly when analysing small datasets or rare subgroups. In these situations, the lasso method in NONMEM performed better, was faster, and additionally validated the covariate model. Alternatively, the performance of SCM can be improved by propagating knowledge or incorporating information from previously analysed studies and by population optimal design. A model was also developed on a physiological/mechanistic basis to fit data from three phase II/III studies on the investigational drug, tesaglitazar. This model described fasting glucose and insulin levels well, despite heterogeneous patient groups ranging from non-diabetic insulin resistant subjects to patients with advanced diabetes. The model predictions of beta-cell mass and insulin sensitivity were well in agreement with values in the literature.

Page generated in 0.069 seconds