• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação da atividade antimicrobiana de curcuminoides e estudo de suas reações de fragmentação em fase gasosa por espectrometria de massas sequencial / Evaluation of the antimicrobial activity of curcuminoids and study of their gas phase fragmentation reactions by sequential mass spectrometry

Vieira, Tatiana Manzini 15 March 2019 (has links)
Neste trabalho, uma série de curcuminoides monocetônicos foram sintetizados por meio da condensação entre acetona e 11 diferentes aldeídos aromáticos. Esses curcuminoides foram posteriormente convertidos em seus álcoois e cetonas saturados correspondentes por meio de reações de hidrogenação catalítica. Os compostos obtidos foram avaliados quanto às suas atividades antimicrobianas frente a um painel representativo de bactérias cariogênicas empregando o método de microdiluição em microplacas. Além disso, as vias de fragmentação em fase gasosa dos curcuminoides monocetônicos protonados foram investigadas por espectrometria de massas sequencial com ionização por eletrospray (ESI-MS/MS) em combinação com dados de massas acuradas, dados de experimentos de espectrometria de massas de estágios múltiplos (MSn) e de troca de deutério, bem como em dados termoquímicos estimados por Química Computacional. Dentre os 31 curcuminoides avaliados, a curcumina A (10), 1E,4E)-1,5-bis(4-hidroxifenil)penta-1,4-dien-3-ona, e o (1E,4E)-1,5-bis(4-hidroxifenil)penta-1,4-dien-3-ona (11), apresentaram a atividade antimicrobiana mais efetiva, com valores de concentração inibitória mínima (CIM) de 50 g/mL contra Streptococcus mutans e de 50 g/mL contra Streptococcus mitis. Os valores de CIM obtidos foram menores que os valores de CIM previamente relatados para a curcumina, que é o análogo -dicetônico do composto 10. As relações estrutura-atividade inferidas sugerem que o grupo hidroxila ligado aos aneis aromáticos e a ligação dupla entre C2-C3 e C2-C3 e o grupo carbonila e C1 são as características responsáveis pela atividade antimicrobiana. Os resultados mostraram que o íon H e o íon acílio D, resultantes de dois rearranjos de hidrogênio competitivos, são os mais intensos no espectro de íons produtos dos curcuminoides protonados. Além da identificação de alguns íons diagnósticos, este trabalho comprovou que a formação de alguns íons produtos ocorreu a partir de um íon intermediário resultante de uma ciclização de Nazarov da molécula protonada, cuja ocorrência foi reportada previamente na literatura. Os dados termoquímicos suportaram as estruturas dos íons propostos e mostraram que a posição da hidroxila fenólica no anel aromático desempenha um papel fundamental sobre a ciclização de Nazarov. Os resultados deste trabalho poderão contribuir futuramente na identificação dos produtos resultante do metabolismo dos estudos in vitro e in vivo sem a necessidade de padrões ou isolamento desses metabolitos / In this work, a series of monoketone curcuminoids were synthesized by condensation between acetone, and 11 (eleven) different aromatic aldehydes. These curcuminoids were subsequently converted to their corresponding saturated alcohols and ketones by means of catalytic hydrogenation reactions. The obtained compounds were evaluated for their antimicrobial activities against a representative panel of cariogenic bacteria using microdilution plating method. In addition, the gas-phase fragmentation pathways of the protonated monoketone curcuminoids were investigated by ionization tandem mass spectrometry (ESI-MS/MS) in combination with accurate mass data, multi-stage mass spectrometry (MSn), and deuterium exchange experiments, as well as in thermochemical data estimated by Computational Chemistry. Among the 31 curcuminoids evaluated, curcumin A (10), (1E,4E)-1,5-bis(4-hydroxyphenyl)penta-1,4-dien-3-one, and (1E,4E)5-bis(4-hydroxyphenyl)penta-1,4-dien-3-one (11) showed the most effective antimicrobial activity, with minimum inhibitory concentration (MIC) values of 50 g/mL against Streptococcus mutans and 50 g/mL against Streptococcus mitis. MIC values of curcumin A (10) were lower than the previously reported MIC values for its -diketone analog of compound 10. The inferred structure-activity relationships indicated that the hydroxyl group attached to the aromatic rings and the double bond between C2-C3 and C2\'-C3 \'and the carbonyl group and C1 are the characteristics responsible for the antimicrobial activity. The results showed that the ion H and the acylium ion D, resulting from two competitive hydrogen rearrangements, are the most intense in the spectrum of proton curcuminoids product ions. Besides the identification of some diagnostic ions, this work proved that the formation of some product ions occured from an intermediate ion resulting from a Nazarov cyclization of the protonated molecule, whose occurrence has been previously reported in the literature. The thermochemical data supported the structures of the proposed ions and showed that the position of the phenolic hydroxyl in the aromatic ring plays a key role in the Nazarov cyclization. The results of this work may contribute in future to the identification of products from the in vitro and in vivo metabolism studies without the need for standards or isolation of these metabolites
12

Organoferrate als Intermediate in Eisen-Katalysierten Kreuzkupplungsreaktionen / Organoferrates as Intermediates in Iron-Catalyzed Cross-Coupling Reactions

Parchomyk, Tobias 14 March 2019 (has links)
No description available.
13

Gas-Phase Studies of Nucleophilic Substitution Reactions: Halogenating and Dehalogenating Aromatic Heterocycles

Donham, Leah L 01 January 2018 (has links)
Halogenated heterocycles are common in pharmaceutical and natural products and there is a need to develop a better understanding of processes used to synthesize them. Although the halogenation of simple aromatic molecules is well understood, the mechanisms behind the halogenation of aromatic heterocycles have been more problematic to elucidate because multiple pathways are possible. Recently, new, radical-based mechanisms have been proposed for heterocycle halogenation. In this study, we examine and test the viability of possible nucleophilic substitution, SN2@X, mechanisms in the halogenation of anions derived from the deprotonation of aromatic heterocycles. All the experiments were done in a modified Thermo LCQ Plus equipped with ESI. The modifications allow a neutral reagent to be added to the helium buffer gas in the 3D ion trap. In this system, it is possible to monitor ion/molecule reactions over time periods up to 10 seconds. A variety of aromatic heterocyclic nucleophiles were chosen based on their inclusion of nitrogen and or sulfur as the heteroatoms. In addition to this, the halogenating molecules chosen included traditional halobenzenes and a new class of perfluorinated alkyl iodides. It was found that, experimentally, the SN2@X path is the likely mechanism in the halogenation of deprotonated heterocycles. With computational modeling, we have additional support for this substitution mechanism. From this original study, two more studies were developed to look at the competing nucleophilic aromatic substitution reaction, SNAr. In the first of these studies, the focus was to look at how electron withdrawing substituents about an aromatic ring affect the ratio of SN2@X verses SNAr. As nucleophiles, 2-thiophenide and 5-thiazolide were used. The neutral reagents focus on trifluorobromobenzene derivatives along with pentafluorobromo- and -iodobenzene, and a two trifluoroiodobenzenes. What was found was that the ratio of the reactions depends on where the fluorines, or electron withdrawing substituents are in relation to the bromine or iodine on the ring. If the fluorines are in a close location to stabilize the resulting ionic product, SN2@X proceeds easily. However, the fluorines directly adjacent to the bromine or iodine also provide steric hinderance in the SNAr reaction. In the final project, arylation and benzylation of bromopyridines was examined. The nucleophiles used were benzyl and phenyl anions as well as 5-thiazolide, and the neutral reagents were bromopyridines, with fluorines used as an electron withdrawing groups to help stabilize the transition state. In these experiments, steric hinderance highly affected the results between the phenyl and benzyl nucleophiles. With benzylic anions, the nucleophile is able to reach the aromatic ring with less steric interference and therefore can proceed with an SNAr reaction. In addition to this, with mono and difluorinated pyridine substrates, the nitrogen in the ring activated the ring yielding nucleophilic aromatic substitution losing fluoride rather than bromide in many cases.
14

Design, Synthesis and Characterization of Small Molecule Inhibitors and Small Molecule : Peptide Conjugates as Protein Actors

Nilsson, Jonas January 2005 (has links)
This thesis describes different aspects of protein interactions. Initially the function of peptides and their conjugates with small molecule inhibitors on the surface of Human Carbonic Anhydrase isoenzyme II (HCAII) is evaluated. The affinities for HCAII of the flexible, synthetic helix-loop-helix motif conjugated with a series of spacered inhibitors were measured by fluorescence spectroscopy and found in the best cases to be in the low nM range. Dissociation constants show considerable dependence on linker length and vary from 3000 nM for the shortest spacer to 40 nM for the longest with a minimum of 5 nM for a spacer with an intermediate length. A rationale for binding differences based on cooperativity is presented and supported by affinities as determined by fluorescence spectroscopy. Heteronuclear Single Quantum Correlation Nuclear Magnetic Resonance (HSQC) spectroscopic experiments with 15N-labeled HCAII were used for the determination of the site of interaction. The influence of peptide charge and hydrophobicity was evaluated by surface plasmon resonance experiments. Hydrophobic sidechain branching and, more pronounced, peptide charge was demonstrated to modulate peptide – HCAII binding interactions in a cooperative manner, with affinities spanning almost two orders of magnitude. Detailed synthesis of small molecule inhibitors in a general lead discovery library as well as a targeted library for inhibition of α-thrombin is described. For the lead discovery library 160 members emanate from two N4-aryl-piperazine-2-carboxylic acid scaffolds derivatized in two dimensions employing a combinatorial approach on solid support. The targeted library was based on peptidomimetics of the D-Phe-Pro-Arg showing the scaffolds cyclopropane-1R,2R-dicarboxylic acid and (4-amino-3-oxo-morpholin-2-yl)- acetic acid as proline isosters. Employing 4-aminomethyl-benzamidine as arginine mimic and different hydrophobic amines and electrophiles as D-phenylalanine mimics resulted in 34 compounds showing IC50 values for α-thrombin ranging more than three orders of magnitude with the best inhibitor showing an IC50 of 130 nM. Interestingly, the best inhibitors showed reversed stereochemistry in comparison with a previously reported series employing a 3-oxo-morpholin-2-yl-acetic acid scaffold.
15

From Copper to Gold: Identification and Characterization of Coinage-Metal Ate Complexes by ESI Mass Spectrometry and Gas-Phase Fragmentation Experiments

Weske, Sebastian 30 January 2019 (has links)
No description available.

Page generated in 0.0509 seconds