• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 14
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 44
  • 44
  • 44
  • 35
  • 30
  • 26
  • 21
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Optimization of Phase-Change Metasurfaces for Infrared Energy and Biosensing Applications

Negm, Ayman January 2023 (has links)
The area of nanophotonics has been the focus of researchers recently due to its high potential to overcome the limitations of scaling in electronic devices. One of the most popular devices in this field is the metasurface. A metasurface consists of a periodic or aperiodic array of spaced units called ’meta-atoms’, where the interaction between these neighboring elements provide unprecedented properties that cannot be obtained using a a regular array of antennas. By tuning the shape and structure of the meta-atoms, electromagnetic wave interaction with the metasurface can be manipulated to achieve a plethora of response characteristics. For active applications that require tunability of the response, a passive metasurface cannot be used to adapt to the varying operating conditions. Tunability of metasurfaces can then be achieved by using phase-changing materials. This type of materials can attain different optical properties by applying external stimulus such as heat, electric current, or laser pulses. The change in the optical properties would be beneficial for applications requiring reconfigurability or adaptation. In this thesis, I demonstrate the employment of volatile (Vanadium Dioxide) and non-volatile (Germanium Antimony Telluride) examples of phase-change materials to design reconfigurable metasurfaces operating at different bands in the infrared regime. I show metallic and dielectric-based structures that employ volatile and non-volatile phase-change materials, as well as apply physics such as plasmonics and bound states in the continuum to design and optimize metasurface structures for energy and biosensing applications. / Thesis / Doctor of Philosophy (PhD) / This thesis proposes methods to design and optimize reconfigurable and adaptive metasurfaces for energy harvesting, radiative cooling, and biosensing applications in the infrared range. The concept of phase-change metasurfaces is highlighted where a phase-change material (PCM) is employed to provide the tunable response. The properties of the PCM can be modified using several excitation methods such as thermal, electric, and laser excitation. The details of material selection, geometry configuration, as well as optimization procedures are demonstrated. Target applications for the study is harvesting from Earth’s ambient radiation around 10.6µm, adaptive cooling of spacecraft in the mid-infrared band 2.5 − 25µm, and trace biomarkers detection in the amide-I and amide-II bands (5.5−6.9µm). Full-wave numerical analysis was conducted using COMSOL Multiphysics software. Optimization was carried out using global optimization techniques implemented using Matlab and Python. The results show innovative designs for switchable absorbers, new approach for modeling of phase-change metasurfaces using deep learning, and employment of the physics of bound states in the continuum for the first time to implement a robust biosensing device. The results of this thesis would help advance the field of reconfigurable nanophotonics and related integrated applications.
12

An Investigation of Phase Change Material (PCM)-Based Ocean Thermal Energy Harvesting

Wang, Guangyao 10 June 2019 (has links)
Phase change material (PCM)-based ocean thermal energy harvesting is a relatively new method, which extracts the thermal energy from the temperature gradient in the ocean thermocline. Its basic idea is to utilize the temperature variation along the ocean water depth to cyclically freeze and melt a specific kind of PCM. The volume expansion, which happens in the melting process, is used to do useful work (e.g., drive a turbine generator), thereby converting a fraction of the absorbed thermal energy into mechanical energy or electrical energy. Compared to other ocean energy technologies (e.g., wave energy converters, tidal current turbines, and ocean thermal energy conversion), the proposed PCM-based approach can be easily implemented at a small scale with a relatively simple structural system, which makes it a promising method to extend the range and service life of battery-powered devices, e.g, autonomous underwater vehicles (AUVs). This dissertation presents a combined theoretical and experimental study of the PCM-based ocean thermal energy harvesting approach, which aims at demonstrating the feasibility of the proposed approach and investigating possible methods to improve the overall performance of prototypical systems. First, a solid/liquid phase change thermodynamic model is developed, based on which a specific upperbound of the thermal efficiency is derived for the PCM-based approach. Next, a prototypical PCM-based ocean thermal energy harvesting system is designed, fabricated, and tested. To predict the performance of specific systems, a thermo-mechanical model, which couples the thermodynamic behaviors of the fluid materials and the elastic behavior of the structural system, is developed and validated based on the comparison with the experimental measurement. For the purpose of design optimization, the validated thermo-mechanical model is employed to conduct a parametric study. Based on the results of the parametric study, a new scalable and portable PCM-based ocean thermal energy harvesting system is developed and tested. In addition, the thermo-mechanical model is modified to account for the design changes. However, a combined analysis of the results from both the prototypical system and the model reveals that achieving a good performance requires maintaining a high internal pressure, which will complicate the structural design. To mitigate this issue, the idea of using a hydraulic accumulator to regulate the internal pressure is proposed, and experimentally and theoretically examined. Finally, a spatial-varying Robin transmission condition for fluid-structure coupled problems with strong added-mass effect is proposed and investigated using fluid structure interaction (FSI) model problems. This can be a potential method for the future research on the fluid-structure coupled numerical analysis of AUVs, which are integrated with and powered by the PCM-based thermal energy harvesting devices. / Doctor of Philosophy / The global ocean, which covers about 71% of the Earth’s surface, absorbs a great amount of heat from the sunshine everyday, making it a reliable and renewable source of thermal energy. Also, the temperature of the ocean water varies with depth, which provides a necessary condition (i.e, a temperature gradient) to extract the thermal energy. If harvested and converted into electrical energy using small scale portable devices, the ocean thermal energy can be a potential energy resource to provide power for autonomous underwater vehicles (AUVs), which are conventionally powered by on-board rechargeable batteries. To this end, this dissertation presents a study of using solid/liquid phase change materials (PCMs) to extract thermal energy from the temperature gradient in the ocean. The basic idea is to use the warm surface water and deep cold water to melt and freeze the PCM cyclically. In the meantime, the volume of PCM will expand and contract accordingly. Therefore, a turbine generator can be driven by the volume expansion in the melting process, thereby converting a fraction of the absorbed thermal energy into electrical energy. This study includes four key aspects. First, to evaluate the theoretical full potential of the PCM-based approach, a solid/liquid phase change thermodynamic model – which represents an idealized energy harvester – is developed. Based on the thermodynamic model, an upperbound of the thermal efficiency is derived. Secondly, two prototypical systems, as well as a thermo-mechanical model which can predict the performance of specific designs, are developed. Third, for the purposes of performance improvement and pressure regulation, the latter of which is associated with the structural safety, a hydraulic accumulator is added to the existing system and its effects are examined using both experimental and theoretical methods. Finally, a computational method is proposed and demonstrated, which can be a potential tool for the design of PCM-based ocean thermal energy harvesting systems when they are integrated with exiting AUVs.
13

Low Energy Photon Detection

Guo, Tianyi 01 January 2023 (has links) (PDF)
Detecting long wave infrared (LWIR) light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. In the realm of contemporary LWIR detectors, they can be broadly classified into two categories: cooled and uncooled detectors. Cooled detectors, such as MCT detectors, excel in terms of high detectivity and fast response times. However, their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications. In contrast, uncooled detectors, exemplified by microbolometers, are capable of functioning at room temperature and come at a relatively lower cost. Nonetheless, they exhibit somewhat lower detectivity and slower response times. Within the scope of this work, I will showcase two innovative approaches aimed at advancing the next generation of LWIR detectors. These approaches are designed to offer high detectivity, swift response times, and room temperature operation. The first approach involves harnessing Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. In addition, I will introduce the application of scanning near-field microscopy for revealing the plasmons generated in graphene, employing both imaging and spectroscopy techniques. The second approach entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, I will present the progress made in integrating graphene-based detectors in this work onto readout circuits to enable the development of dense pixel focal plane array.
14

Enhanced Metamaterials for Reconfigurable mm-Wave and THz Systems

Sanphuang, Varittha 30 September 2016 (has links)
No description available.
15

STUDY OF FULLY-MIXED HYBRID THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIALS FOR SOLAR HEATING APPLICATIONS

Abdelsalam, Mohamed 11 1900 (has links)
A novel design of hybrid thermal energy storage (HTES) using Phase Change Material (PCM) was evaluated using a mathematical model. Both single and multi-tank (cascaded) storage were explored to span small to large-scale applications (200-1600 litres). The storage element was based on the concept of a fully-mixed modular tank which is charged and discharged indirectly using two immersed coil heat exchangers situated at the bottom and top of the tank. A three-node model was developed to simulate different thermal behaviors during the operation of the storage element. Experiments were conducted on full-scale 200-l single-tank sensible heat storage (SHS) and hybrid thermal energy storage (HTES) to provide validation for the mathematical model. The HTES incorporated rectangular PCM modules submerged in the water tank. Satisfactory agreement was found between the numerical results and the experimental results obtained by Mather (2000) on single and multi-tank SHS. In addition, good agreement was noticed with the experiments performed by the author on single-tank SHS and HTES at McMaster University. The developed model was found to provide high levels of accuracy in simulating different operation conditions of the proposed design of storage element as well as computational efficiency. A parametric study was undertaken to investigate the potential benefits of the HTES over the SHS, operating under idealistic conditions. The HTES can perform at least two times better than the SHS with the same volume. The PCM volume fraction, melting temperature and properties were found to have critical impact on the storage gains of the HTES. All the parameters must be adjusted such that: (1) the thermal resistance of the storage element is minimized, and (2) most of the energy exchange with the storage element takes place in the latent heat form. The performance of the single-tank HTES was evaluated numerically while operating in a solar thermal domestic hot water (DHW) system for a single-family residence. The PCM parameters were selected to maximize the solar fraction during the operation on a typical spring day in Toronto. The use of the HTES can reduce the tank volume by 50% compared to the matched size of the SHS tank. However, the HTES was found to underperform the SHS when the system was operated in different days with different solar irradiation intensities. The effect of different draw patterns was also investigated. The results indicated that thermal storage is needed only when the energy demand is out-of-phase with the energy supply. For the same daily hot water demand, different consumption profiles; ex. dominant morning, dominant evening, dominant night and dispersed consumptions, showed slight impact on the performance of the system. The concept of multi-tank (cascaded) HTES storage was explored for medium/large scale solar heating applications such as for restaurants, motels, and multi-family residences. The design was based on the series connection of modular tanks through the bottom and top heat exchangers. Each individual tank had a PCM with different melting temperature. The results showed that the cascaded storage system outperformed the single-tank system with the same total volume as a result of the high levels of sequential or tank-to-tank stratification. The use of the cascaded HTES resulted in slight improvement in the solar fraction of the system. / Thesis / Doctor of Philosophy (PhD)
16

The Application of Microencapsulated Biobased Phase Change Material on Textile

Hagman, Susanna January 2016 (has links)
The increasing demand for energy in combination with a greater awareness for our environmental impact have encouraged the development of sustainable energy sources, including materials for energy storage. Latent heat thermal energy storage by the use of phase change material (PCM) have become an area of great interest. It is a reliable and efficient way to reduce energy consumption. PCMs store and release latent heat, which means that the material can absorb the excess of heat energy, save it and release it when needed. By introducing soy wax as a biobased PCM and apply it on textile, one can achieve a thermoregulation material to be used in buildings and smart textiles. By replacing the present most used PCM, paraffin, with soy wax one cannot only decrease the use of fossil fuel, but also achieve a less flammable material. The performance of soy wax PCM applied on a textile fabric have not yet been investigated but can be a step towards a more sustainable energy consumption. The soy wax may also broaden the application for PCM due to its low flammability. The aim is to develop an environmental friendly latent heat thermal energy storage material to be used within numerous application fields.
17

Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation

Muhammad, Mubarak Danladi January 2014 (has links)
Concentrated solar power (CSP) has the potential of fulfilling the world’s electricity needs. Parabolic-trough system using synthetic oil as the HTF with operating temperature between 300 and 400o C, is the most matured CSP technology. A thermal storage system is required for the stable and cost effective operation of CSP plants. The current storage technology is the indirect two-tank system which is expensive and has high energy consumption due to the need to prevent the storage material from freezing. Latent heat storage (LHS) systems offer higher storage density translating into smaller storage size and higher performance but suitable phase change materials (PCMs) have low thermal conductivity, thus hindering the realization of their potential. The low thermal conductivity can be solved by heat transfer enhancement in the PCM. There is also lack of suitable commercially-available PCMs to cover the operating temperature range. In this study, a hybrid cascaded storage system (HCSS) consisting of a cascaded finned LHS and a high temperature sensible or concrete tube register (CTR) stages was proposed and analysed via modelling and simulation. Fluent CFD code and the Dymola simulation environment were employed. A validated CFD phase change model was used in determining the heat transfer characteristics during charging and discharging of a finned and unfinned LHS shell-and-tube storage element. The effects of various fin configurations were investigated and heat transfer coefficients that can be used for predicting the performance of the system were obtained. A model of the HCSS was then developed in the Dymola simulation environment. Simulations were conducted considering the required boundary conditions of the system to develop the best design of a system having a capacity of 875 MWhth, equivalent to 6 hours of full load operation of a 50 MWe power plant. The cascaded finned LHS section provided ~46% of the entire HCSS capacity. The HCSS and cascaded finned LHS section have volumetric specific capacities 9.3% and 54% greater than that of the two-tank system, respectively. It has been estimated that the capital cost of the system is ~12% greater than that of the two-tank system. Considering that the passive HCSS has lower operational and maintenance costs it will be more cost effective than the twotank system considering the life cycle of the system. There is no requirement of keeping the storage material above its melting temperature always. The HCSS has also the potential of even lower capital cost at higher capacities (>6 hours of full load operation).
18

Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces

Gowreesunker, Baboo Lesh Singh January 2013 (has links)
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
19

Numerical and Experimental Study of Heat and Mass Transfer Enhancement using Phase Change Materials

Khakpour, Yasmin 01 May 2014 (has links)
Conventional heat transfer enhancement methods have focused on the surface characteristics of the heat-exchanger. The enhancement of heat transfer through altering the characteristics of the working fluid has become a new subject of interest. Micro-encapsulated phase change material (MEPCM) slurries show improved heat transfer abilities compared to single phase heat transfer fluids such as water due to their higher specific heat values in their phase change temperature range. The present work is a numerical and experimental study towards fundamental understanding of the impact of using PCM on thermal and fluid flow characteristics of different single-phase and two-phase heat transfer applications. The mathematical formulation to represent the presence of single and multi-component MEPCM is developed and incorporated into the numerical model for single-phase and two-phase fluid flow systems. In particular, the use of PCM in its encapsulated form for heat transfer enhancement of liquid flow in the presence of evaporation is explored. In addition, an experimental study is conducted to validate the numerical model in a setting of natural convection flow. Finally, the application of PCM in its layered form on the effectiveness of drying of moist porous materials (e.g. paper) is investigated.
20

Application of Phase Change Materials to Improve the Thermal Performance of Buildings and Pavements

Pourakbar Sharifi, Naser 11 January 2017 (has links)
In recent decades, much research has investigated the efficiency of Phase Change Materials (PCMs) in improving the thermal performance of buildings and pavements. In buildings, increasing the thermal inertia of structural elements by incorporating PCMs decreases the energy required to keep the inside temperature in the comfort range. In concrete pavements, using PCMs decreases the number of freeze/thaw cycles experienced by the pavement and thus increases service life. However, PCMs cannot be added to cementitious binders directly, because they interfere with the hydration reactions between cement and water that produce strength-bearing phases. Therefore different carriers have been proposed to indirectly incorporate PCMs in cementitious materials. Lightweight Aggregate (LWA) is one of the materials that has been proposed as PCM carrier agent. However, it was not studied in depth before. Various experiments were conducted to investigate the problems associated with incorporating LWA presoaked in PCM in cementitious media. The results show that a portion of PCM leaks out of the LWA’s structure and subsequently affects different chemical, physical, and mechanical properties of the binder. In addition, the applicability of Rice Husk Ash (RHA), a common material never before used to encapsulate PCM, as a PCM carrier agent was investigated. The results show that RHA can absorb and contain liquids in its porous structure; and regarding its compatibility with the cementitious media, it can be used as PCM carrier. Different computational simulations using Typical Meteorological Year data were conducted to evaluate the efficiency of PCMs in improving the thermal performance of buildings. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve the governmental plans of “Zero Net Energy� buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays in the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, PCMs’ efficiency is completely dependent on the input temperature profile.

Page generated in 0.1261 seconds