• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 14
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 44
  • 44
  • 44
  • 35
  • 30
  • 26
  • 21
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural studies of salt hydrates for heat-storage applications

Clark, Rowan Elizabeth January 2018 (has links)
Salt hydrates have the potential to be used in heat storage as both phase-change materials (PCMs) and thermochemical materials (TCMs). These materials offer advantages over traditional heat storage methods due to their high energy densities. However, both domestic and industrial applications require thousands of thermal cycles and there are often many issues that need to be overcome before these materials can be used reliably for heat storage. One of the major issues with using salt hydrates as PCMs is incongruency - the formation of anhydrous phases during melting. In this research, the mechanisms of the action of polymers to prevent incongruency in sodium acetate trihydrate have been investigated. A new polymorph of anhydrous sodium acetate, Form IV, was obtained in the presence of the polymer. This polymorph crystallises as long, blade-shaped crystals, thereby increasing the surface area to volume ratio. Indexing of the crystal faces revealed that every face had Na+ or the oxygen atoms of the acetate ion near or on the surface, as opposed to hydrophobic methyl groups found on the faces of the anhydrous salt grown without polymer. These two factors are believed to significantly increase the dissolution kinetics. This technique has the potential to be used for screening polymers to reformulate other salt hydrates that display incongruent behaviour. Eutectic compositions of NaCl and KCl with strontium hydroxide octahydrate were investigated as a potential means to prevent the incongruency of this PCM. However, degradation was observed with thermal cycling. Variable temperature PXRD studies discovered a new Sr(OH)2 hydrate when heating above 75 °C - Sr(OH)2. ⅓H2O. The recrystallisation of the octahydrate from the new phase was slow with incomplete conversion, explaining the degradation with continuous cycling. The effect of addition of NaCl and KCl to congruent barium hydroxide octahydrate was also investigated. On heating, a phase transition was observed, but the samples remained solid. Variable temperature PXRD investigations discovered that this was due to the formation of the salt hydrate, Ba(OH)Cl.2H2O. This hydrate melted at 110 °C, showing its potential as a high temperature PCM. The dehydration pathways of magnesium sulfate heptahydrate were investigated. In-situ PXRD studies showed that changing the heating rate changed the intermediates present during the dehydration. The fast dehydration rate saw both the known phases of trihydrate and 2.5 hydrate form as the dehydration product of the tetrahydrate. These both then dehydrated to the known dihydrate. This differed when the slower heating rate was used, as the trihydrate was the only product of dehydration from the tetrahydrate. The trihydrate then proceeded to dehydrate to a new phase. This was found to be a new polymorph of the dihydrate, β-MgSO4.2H2O. Dehydration of MgSO4.7H2O with 50 mol% NaCl was also performed. Loeweite, Na12Mg7(SO4)13.15H2O, a dication sulfate hydrate, was formed as the major intermediate. This mixture showed advantages over the pure MgSO4.7H2O as dehydration to the monohydrate took less time and occurred at a lower temperature. There were also three fewer intermediate phases before dehydration to the monohydrate. Suspension and encapsulation materials were used in order to overcome the major issue of agglomeration with magnesium sulfate. Liquid water was ruled out as a viable hydration medium. Apparatus was developed to test humidity cycling, which allowed the effects of dehydration time and temperature to be investigated, as well testing a range of different formulations.
22

Phase-change materials for thermal energy storage

Oliver, David Elliot January 2015 (has links)
There is a current requirement for technologies that store heat for both domestic and industrial applications. Phase-change materials (PCMs) represent an important class of materials that offer potential for heat storage. Heat-storage systems are required to undergo multiple melt/freeze cycles without any change in melting-crystallisation point and heat output. Salt hydrates are attractive candidates on account of their high energy densities, but there are issues associated with potential crystallisation of lower-hydrates, long-term stability, and reliable nucleation. An extensive review of the PCMs in the literature, combined with an evaluation of commercially available PCMs led to the conclusion that many of the reported PCMs, lack at least one of the key requirements required for use as a heat-storage medium. The focus of this research was therefore to identify and characterise new PCM compositions with tailored properties. New PCM compositions based of sodium acetate trihydrate were developed, which showed improved properties through the use of selective polymers that retard the nucleation of undesirable anhydrous sodium acetate. Furthermore, the mechanism of nucleation of sodium acetate trihydrate by heterogeneous additives has been investigated using variable-temperature powder X-ray diffraction. This study showed that when anhydrous Na2HPO4 was introduced to molten sodium acetate trihydrate at 58°C the hydrogenphosphate salt is present as the dihydrate. On heating to temperatures in the range 75-90°C the dihydrate was observed to dehydrate to form anhydrous Na₂HPO4. This result explains the prior observation that the nucleator is deactivated on heating. The depression of melting point of sodium acetate trihydrate caused by the addition of lithium acetate dihydrate has also been investigated using differential scanning calorimetry and powder X-ray diffraction. It has been possible to tune the melting point of sodium acetate trihydrate thereby modifying its thermal properties. Studies of the nucleation of sodium thiosulfate pentahydrate, a potential PCM, led to the structural characterisation of six new hydrates using single crystal Xray diffraction. All of these hydrates can exist in samples with the pentahydrate composition at temperatures ranging from 20°C to 45°C. These hydrates are: α-Na₂S₂O₃·2H₂O, which formed during the melting of α-Na₂S₂O₃·5H₂O; two new pentahydrates, β-Na₂S₂O₃·5H₂O and γ-Na₂S₂O₃·5H₂O; Na₂S₂O₃·1.33 H₂O, β-Na₂S₂O₃·2H₂O and Na₂S₂O₃·3.67 H₂O, which formed during the melting of β- Na₂S₂O₃·5H₂O. Furthermore, new PCMs in the 75-90°C range were identified. The commercial impact and route to market of several of the PCMs are discussed in the final chapter.
23

Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials

Tumuluri, Kalpana 2010 May 1900 (has links)
The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled carbon nanotubes and their properties like thermal conductivity and viscosity have been measured. Microencapsulated phase change material slurries containing microcapsules of octadecane have been purchased from Thies Technology Inc. Tests have been conducted to determine the durability and viscosity of the MPCM slurries. Heat transfer experiments have been conducted to determine the heat transfer coefficients and pressure drop of the MWCNT nanofluids and MPCM slurries under turbulent flow and constant heat flux conditions. The MPCM slurry and the MWCNT nanofluid have been combined to form a new heat transfer fluid. Heat transfer tests have been conducted to determine the heat transfer coefficient and the pressure drop of the new fluid under turbulent flow and constant heat flux conditions. The potential use of this fluid in convective heat transfer applications has also been discussed. The heat transfer results of the MPCM slurry containing octadecane microcapsules was in good agreement with the published literature. The thermal conductivity enhancement obtained for MWCNTs with diameter (60-100 nm) and length (0.5-40?m) was 8.11%. The maximum percentage enhancement (compared to water) obtained in the heat transfer coefficient of the MWCNT nanofluid was in the range of 20-25%. The blend of MPCMs and MWCNTs was highly viscous and displayed a shear thinning behavior. Due to its high viscosity, the flow became laminar and the heat transfer performance was lowered. It was interesting to observe that the value of the maximum local heat transfer coefficient achieved in the case of the blend (laminar flow), was comparable to that obtained in the case of the MPCM slurry (turbulent flow). The pressure drop of the blend was lower than that of the MWCNT nanofluid.
24

Latent Heat Thermal Energy Storage Device for Automobile Applications

Shih, Po-Chen 28 November 2013 (has links)
Driving with the cold engine increases fuel consumption and greenhouse gases emissions. A latent heat energy storage device has been proposed to recover waste heat and reduce engine warm-up time by using phase change materials (PCMs) as an energy storage medium. Two types of paraffin waxes and 50/50 mixture of the two have been examined to characterize their behaviors under repetitive heating/freezing. From the results, the heat transfer is more effective in the case of narrower spacing distances between the cooling plates and high circulating flow rate of the heat transfer fluid. A 50/50 mixture of two paraffin waxes also provides better heat transfer due to the possible existence of both conduction and natural convection. The results of the metal block simulation experiments demonstrated the potential of latent heat TES’s for use in engine warm-up.
25

Latent Heat Thermal Energy Storage Device for Automobile Applications

Shih, Po-Chen 28 November 2013 (has links)
Driving with the cold engine increases fuel consumption and greenhouse gases emissions. A latent heat energy storage device has been proposed to recover waste heat and reduce engine warm-up time by using phase change materials (PCMs) as an energy storage medium. Two types of paraffin waxes and 50/50 mixture of the two have been examined to characterize their behaviors under repetitive heating/freezing. From the results, the heat transfer is more effective in the case of narrower spacing distances between the cooling plates and high circulating flow rate of the heat transfer fluid. A 50/50 mixture of two paraffin waxes also provides better heat transfer due to the possible existence of both conduction and natural convection. The results of the metal block simulation experiments demonstrated the potential of latent heat TES’s for use in engine warm-up.
26

Epitaxial Ge-Sb-Te Thin Films by Pulsed Laser Deposition

Thelander, Erik 09 April 2015 (has links) (PDF)
This thesis deals with the synthesis and characterization of Ge-Te-Sb (GST) thin films. The films were deposited using a Pulsed Laser Deposition (PLD) method and mainly characterized with XRD, SEM, AFM and TEM. For amorphous and polycrystalline films, un-etched Si(100) was used. The amorphous films showed a similar crystallization behavior as films deposited with sputtering and evaporation techniques. When depositing GST on un-etched Si(100) substrates at elevated substrate temperatures (130-240°C), polycrystalline but highly textured films were obtained. The preferred growth orientation was either GST(111) or GST(0001) depending on if the films were cubic or hexagonal. Epitaxial films were prepared on crystalline substrates. On KCl(100), a mixed growth of hexagonal GST(0001) and cubic GST(100) was observed. The hexagonal phase dominates at low temperatures whereas the cubic phase dominates at high temperatures. The cubic phase is accompanied with a presumed GST(221) orientation when the film thickness exceeds ~70 nm. Epitaxial films were obtained with deposition rates as high as 250 nm/min. On BaF2(111), only (0001) oriented epitaxial hexagonal GST films are found, independent of substrate temperature, frequency or deposition background pressure. At high substrate temperatures there is a loss of Ge and Te which shifts the crystalline phase from Ge2Sb2Te5 towards GeSb2Te4. GST films deposited at room temperature on BaF2(111) were in an amorphous state, but after exposure to an annealing treatment they crystallize in an epitaxial cubic structure. Film deposition on pre-cleaned and buffered ammonium fluoride etched Si(111) show growth of epitaxial hexagonal GST, similar to that of the deposition on BaF2(111). When the Si-substrates were heated directly to the deposition temperature films of high crystal-line quality were obtained. An additional heat treatment of the Si-substrates prior to deposition deteriorated the crystal quality severely. The gained results show that PLD can be used as a method in order to obtain high quality epitaxial Ge-Sb-Te films from a compound target and using high deposition rates.
27

Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation

Muhammad, Mubarak Danladi 09 1900 (has links)
Concentrated solar power (CSP) has the potential of fulfilling the world’s electricity needs. Parabolic-trough system using synthetic oil as the HTF with operating temperature between 300 and 400o C, is the most matured CSP technology. A thermal storage system is required for the stable and cost effective operation of CSP plants. The current storage technology is the indirect two-tank system which is expensive and has high energy consumption due to the need to prevent the storage material from freezing. Latent heat storage (LHS) systems offer higher storage density translating into smaller storage size and higher performance but suitable phase change materials (PCMs) have low thermal conductivity, thus hindering the realization of their potential. The low thermal conductivity can be solved by heat transfer enhancement in the PCM. There is also lack of suitable commercially-available PCMs to cover the operating temperature range. In this study, a hybrid cascaded storage system (HCSS) consisting of a cascaded finned LHS and a high temperature sensible or concrete tube register (CTR) stages was proposed and analysed via modelling and simulation. Fluent CFD code and the Dymola simulation environment were employed. A validated CFD phase change model was used in determining the heat transfer characteristics during charging and discharging of a finned and unfinned LHS shell-and-tube storage element. The effects of various fin configurations were investigated and heat transfer coefficients that can be used for predicting the performance of the system were obtained. A model of the HCSS was then developed in the Dymola simulation environment. Simulations were conducted considering the required boundary conditions of the system to develop the best design of a system having a capacity of 875 MWhth, equivalent to 6 hours of full load operation of a 50 MWe power plant. The cascaded finned LHS section provided ~46% of the entire HCSS capacity. The HCSS and cascaded finned LHS section have volumetric specific capacities 9.3% and 54% greater than that of the two-tank system, respectively. It has been estimated that the capital cost of the system is ~12% greater than that of the two-tank system. Considering that the passive HCSS has lower operational and maintenance costs it will be more cost effective than the twotank system considering the life cycle of the system. There is no requirement of keeping the storage material above its melting temperature always. The HCSS has also the potential of even lower capital cost at higher capacities (>6 hours of full load operation).
28

Thermal Storage and Transport in Colloidal Nanocrystal-Based Materials

January 2015 (has links)
abstract: The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport. Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed. In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2015
29

Design Techniques for Frequency Reconfigurability in Multi-Standard RF Transceivers

Singh, Rahul 01 May 2018 (has links)
Compared to current single-standard radio solutions, multi-standard radio transceivers enable higher integration, backward compatibility and save power, area and cost. The primary bottleneck in their realization is the development of high-performance frequency-reconfigurable RF circuits. To that end, this research introduces several CMOS-integrated, transformer-based reconfigurable circuit techniques whose effectiveness is validated through measurements of designed transceiver front-end low-noise (LNA) and power amplifier (PA) prototypes. In the first part, the use of high figure-of-merit phase-change (PC) based RF switches in the reconfiguration of CMOS LNAs in the receiver front-end is proposed. The first reported demonstration of an integrated, PC-switch based, dual-band (3/5 GHz) reconfigurable CMOS LNA with transformer source degeneration and designed in a 0.13 μm process is presented. In the second part, a frequency-reconfigurable CMOS transformer combiner is introduced that can be reconfigured to have similar efficiencies at widely separated frequency bands. A 65-nm CMOS triple-band (2.5/3/3.5 GHz) PA employing the reconfigurable combiner was designed. In the final part of this work, the use of transformer coupled-resonators in mm-wave LNA designs for 28 GHz bands was investigated. To cover contiguous and/or widely-separated narrowband channels of the emerging 5G standards, a 65-nm CMOS 24.9-32.7 GHz wideband multi-mode LNA using one-port transformer coupled-resonators was designed. Finally, a 25.1-27.6 GHz tunable-narrowband digitally-calibrated merged LNA-vector modulator design employing transformer coupled-resonators is presented that proposes a compact, differential quadrature generation scheme for phased-array architectures.
30

A Finite Element-Based Framework for Understanding the Energy Performance of Concrete Elements Incorporating Phase Change Materials

January 2012 (has links)
abstract: Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics. / Dissertation/Thesis / M.S. Civil Engineering 2012

Page generated in 0.1024 seconds