• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 17
  • 17
  • 14
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 447
  • 394
  • 223
  • 215
  • 83
  • 79
  • 78
  • 75
  • 73
  • 71
  • 62
  • 59
  • 58
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Secondary electron yield measurements of anti-multipacting surfaces for accelerators

Wang, Sihui January 2016 (has links)
Electron cloud is an unwanted effect limiting the performance of particle accelerators with positively charged particle beams of high-intensity and short bunch spacing. However, electron cloud caused by beam induced multipacting can be sufficiently suppressed if the secondary electron yield (SEY) of accelerator chamber surface is lower than unity. Usually, the SEY is reduced by two ways: modification of surface chemistry and engineering the surface roughness. The objective of this PhD project is a systematic study of SEY as a function of various surface related parameters such as surface chemistry and surface morphology, as well as an effect of such common treatments for particle accelerators as beam pipe bakeout and surface conditioning with a beam, ultimately aiming to engineer the surfaces with low SEY for the electron cloud mitigation. In this work, transition metals and their coatings and laser treated surface were studied as a function of annealing treatment and electron bombardment. The transition metal thin films have been prepared by DC magnetron sputtering for further test. In the first two Chapter of this thesis, the literature review on electron emission effect is introduced, which includes the process of the electron emission, the influence factor and examples of low SEY materials. In the third Chapter, the experimental methods for SEY measurements and surface investigation used in this work are described. In Chapter 4, the SEY measurement setup which is built by myself are introduced in detail. In Chapter 5 transition metals and their coatings and non-evaporable getter (NEG) coatings have been studied. All the samples have been characterized by SEY measurements, their surface morphology was analysed with Scanning Electron Microscopy (SEM) and their chemistry was studied with X-ray Photoelectron Spectroscopy (XPS). Different surface treatments such as conditioning by electron beam, thermal treatment under vacuum on the sample surfaces have been investigated. For example, the maximum SEY (δmax) of as-received Ti, Zr, V and Hf were 2.30, 2.31, 1.72 and 2.45, respectively. After a dose of 7.9x10-3 C mm-2, δmax of Ti drops to 1.19. δmax for Zr, V and Hf drop to 1.27, 1.48 and 1.40 after doses of 6.4x10-3 C mm-2, 1.3x10-3 and 5.2x10-3 C mm-2, respectively. After heating to 350 °C for 2.5 hours, the SEY of bulk Ti has dropped to 1.21 and 1.40, respectively. As the all bulk samples have a flat surface, there are no difference of morphology. So this reduction of SEY is believed to be a consequence of the growth of a thin graphitic film on the surface after electron bombardment and the removal of the contaminations on the surface after annealing. Chapter 6 of this thesis is about the laser treated surface. Laser irradiation can transform highly reflective metals to black or dark coloured metal. From SEM results, metal surfaces modified by a nanosecond pulsed laser irradiation form a highly organised pyramid surface microstructures, which increase the surface roughness. Due to this reason, δmax of as-received laser treated surface could be lower than 1, which can avoid the electron cloud phenomenon. In this Chapter, the influence of different laser treatment parameters, such as power, hatch distance, different atmospheres on SEY has been investigated. Meanwhile, different surface treatments such as electron conditioning and thermal treatments are studied on the laser treated surface with the investigation of XPS. For example, the δmax of as-received type I with hatch distance 50, 60 and 80 μm in Air are 0.75, 0.75 and 0.80, respectively. After heating to 250 °C for 2 hours, in all case the δmax drop to 0.59, 0.60, 0.62, respectively. The SEYs of all as-received samples are lower than 1 due to the increasing the roughness on the surface by the special pyramid structure. After thermal treatment, the SEY reduces even further. This is caused by removing the contaminations on the surfaces. In conclusion, the present study has largely improved the knowledge of the electron cloud mitigation techniques by surface engineering of vacuum chambers. On the one hand, the surface treatments can modify the surface chemistry, such as the produce the graphic carbon layer on the surface by electron condition and the removal the contamination layer on the top of the surface by thermal treatment. On the other hand, the SEY could be critically low by engineering the surface roughness. Both methods allow reaching δmax less than unity. The efficiency of laser treated surface for e-cloud was demonstrated for a first time leading to a great interest to this new technology application for existing and future particle accelerators.
202

Photophysical properties of zinc carboxy phthalocyanine-quantum dot conjugates / Photophysical properties of zinc carboxy phthalocyanines-quantum dot conjugates

Sekhosana, Kutloano Edward 27 March 2013 (has links)
This thesis presents work based on the interactions of water soluble caboxylated zinc phthalocyanines (Pcs) and coreshell quantum dots (QDs). The Pcs are ZnPc(COOH)₈ and ZnPc(COOH)₄ and coreshell QDs are CdTe@ZnS-GSH. GSH = L-glutathione. Characterization and photophysical studies of conjugates were carried out. The approach of coordinating Pcs to QDs was achieved using an organic cross linker, N-N’-dicyclohexylcarbodiimide (DCC) at pH 10 at room temperature. Employing atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, infrared and X-ray photoelectron spectroscopies, the formation of the conjugates was confirmed. Upon conjugation with Pc derivatives, the fluorescence quantum yield of CdTe@ZnS-GSH decreased due to energy transfer from the QDs to the Pc. The average fluorescence lifetime of the CdTe@ZnS-GSH QD also decreased upon conjugation. The föster resonance energy transfer (FRET) behaviour of CdTe@ZnS-GSH-ZnPc(COOH)₄ conjugates was compared to that of CdTe@ZnS-GSH-ZnPc(COOH)₈. Higher FRET efficiencies were observed for CdTe@ZnS-GSH-ZnPc(COOH)₄-mixed or CdTe@ZnS-GSH-ZnPc(COOH)₄-linked compared to the corresponding CdTe@ZnS-GSH-ZnPc(COOH)₈-mixed or CdTe@ZnS-GSH-ZnPc(COOH)₈-linked. Triplet quantum yield (ΦT) and lifetime (ΤT) of ZnPc(COOH)₈ were found to increase in the presence of coreshell QDs. Though the singlet quantum yield (ΦΔ) value of ZnPc(COOH)8 was lower than ΦT , there was a slight upsurge in the ΦT in the presence of QDs. / Microsoft� Word 2010 / Adobe Acrobat 9.53 Paper Capture Plug-in
203

Nanocaractérisation d'oxydes à changement de résistance pour les mémoires résistives / Nanocharacterization of resistance switching oxides for resistive memories

Calka, Pauline 17 October 2012 (has links)
En raison de leur faible consommation d'énergie, les mémoires non volatiles (MNV) sont En raison de leur faible consommation d'énergie, les mémoires non-volatiles sont particulièrement intéressantes pour l'électronique portative (clé USB, téléphone, ordinateur portable …). Les mémoires Flash, qui dominent le marché, atteignent leurs limites physiques et doivent être remplacées. L'introduction de nouveaux matériaux et architectures mémoire est proposée. Les mémoires OxRRAM (Oxide Resistive Random Access Memory) sont des candidats potentiels. Il s'agit de structures M-O-M (Métal-Oxyde-Métal). Le stockage de l'information est basé sur la modulation de la résistance de l'oxyde à l'application d'un champ électrique ou d'un courant. Une meilleure compréhension du mécanisme de changement de résistance de ces dispositifs est nécessaire pour contrôler leurs performances. Nous nous intéressons au claquage diélectrique de l'oxyde, qui initie le mécanisme de changement de résistance. Les mesures physico-chimiques à l'échelle nanométrique sont indispensables à sa compréhension et font défaut dans la littérature. Dans cette thèse, nous proposons des mesures physico-chimiques, des mesures électriques et des méthodes de préparation d'échantillon adaptées. Les oxydes de nickel et d'hafnium sont investigués. En plus de la dégradation électrique (chute de résistance), les modifications de ces deux oxydes sont investiguées à trois niveaux : la composition chimique, la morphologie et la structure électronique. Mots-clés : mémoire résistive, mécanisme de changement de résistance, claquage diélectrique, NiO, HfO2, spectroscopie de photoélectrons, microscopie électronique en transmission, microscopie à forme atomique, lacunes d'oxygène. / With low energy consumption, non-volatile memories are interesting for portative applications (USB, mobile phone, laptop …). The Flash memory technology is reaching its physical boundaries and needs to be replaced. New materials and architectures are currently investigated. Oxide Resistive Random Access Memory (OxRRAM) is considered as a good candidate. It is based on a M-O-M (Metal-Oxide-Metal) stack. The information is stored using an electric field or a current that modulates the resistance of the oxide. A better understanding of the resistance switching mechanism is required in order to control the performances of the devices. We investigate the dielectric breakdown that activates the resistance switching properties. Physico-chemical characterization at the nanoscale is required. In this work, we propose proper physico-chemical and electrical measurements. Sample preparation is also considered. Nickel and hafnium oxide are investigated. Besides the evolution of the electrical properties, we analyze the oxide modification at three levels : the chemical composition, the morphology and the electronic structure. Keywords : resistive memory, resistance switching mechanism, dielectric breakdown, NiO, HfO2, photoelectron spectroscopy, electronic transmission microscopy, atomic force microscopy, oxygen vacancies.
204

Determinação estrutural da superfície de óxidos ordenados por difração de fotoelétrons: o caso de CrxOy sobre Pd(111) e SrTiO3(100) / Structural determination of ordered oxide surface by photoelectron diffraction: the case CrxOy sobre Pd(111) e SrTiO3(100)

Pancotti, Alexandre 12 September 2009 (has links)
Orientadores: Richard Landers, Abner de Siervo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T22:49:38Z (GMT). No. of bitstreams: 1 Pancotti_Alexandre_D.pdf: 18876572 bytes, checksum: 607e084dcdd143737b311eaaf705dc73 (MD5) Previous issue date: 2009 / Resumo: Este trabalho apresenta um estudo sobre a estrutura atômica da superfície de dois materiais com potencial para suportar nano partículas metálicas num catalisador modelo, o primeiro, Óxido de Cromo é um suporte usado comercialmente, e o segundo, SrTiO3(100) (STO) tem a característica interessante de induzir o crescimento de nano partículas de alguns metais com formatos definidos pelo tipo de tratamento térmico que o suporte recebeu. O Óxido de cromo estava na forma de filmes ordenados crescidos epitaxialmente sobre um cristal de Pd(111) enquanto que o SrTiO3 consistia de cristal dopado com Nb cortado segundo a face (100). Os filmes de óxido de cromo sobre Pd(111) foram crescidos "in-situ" na câmara de análises pela deposição de cromo metálico numa atmosfera de oxigênio (1,0.10-6 mBar) sobre o substrato aquecido (623K) o que produziu filmes com boa cristalinidade e estequiometria. Foram estudados filmes com duas estruturas diferentes: óxido de cromo com 3.5 Å de espessura que apresentava uma reconstrução tipo p(2x2) e um filme mais espesso com 12.0 Å que mostrava uma reconstrução (V3xV3)R30o, ambos determinados por LEED (Low Energy Electron Diffraction). A composição e a estrutura atômica foram determinadas por XPS (X-Ray Photoelectron Spectroscopy) e XPD (X-Ray Photoelectron Diffraction), respectivamente. Titanato de Estrôncio, SrTiO3 normalmente é um material isolante, mas a adição de Nb como dopante o transformou em um material suficientemente condutor para permitir o uso das mesmas técnicas para o estudo da estrutura atômica e composição de sua superfície. Nestes estudos foram utilizados como fontes de excitação radiação Síncrotron de 700 eV de energia da linha SGM do Laboratório Nacional de Luz Síncrotron e fontes convencionais de raios-X (Al, Mg) Ka. Para o modelamento teórico das estruturas superficiais empregou se o pacote MSCD [1] juntamente com um algoritmo genético [2] para acelerar a procura dos parâmetros estruturais. Determinou se que o filme mais fino de óxido de cromo correspondia a CrO com uma reconstrução p(2x2). A primeira e a segunda distâncias interplanares foram determinadas como sendo iguais a 0,16 Å e 1,92 Å, respectivamente. O filme mais grosso foi estudado em duas situações, como crescido e após tratamento térmico a 973K. Nas duas situações o filme se apresentou como a-Cr2O3(0001), mas com terminações diferentes. Antes do aquecimento do filme os resultados de XPD mostraram que a superfície é terminada por uma camada de "O" com a primeira distância interplanar expandida de 9,5% em relação ao seu valor no volume. Depois do aquecimento, a superfície é terminada em uma dupla camada formada por átomos de Cr, com a primeira distância interplanar reduzida de 68% em relação ao seu valor no volume. Os resultados para a superfície do STO mostraram regiões de SrO e TiO2. Em ambos os casos todas as camadas de cátions relaxam para dentro e os átomos da segunda camada relaxam para fora resultando na corrugação das superfícies do TiO2e SrO. Estes resultados se comparam muito bem com os resultados encontrados por LEED. Usando o algoritmo genético foi possível determinar que 30% da superfície do cristal é recoberta por ilhas de SrO(100) / Abstract: This thesis presents a study of the atomic structure of the surface of two materials with potential as supports for metallic nanoparticles in model catalysts. The first is Chromium Oxide that is used as a support for commercial catalysts, and the second is SrTiO3(100) (STO), which has the very interesting characteristic of inducing the growth of nanoparticles of some metals with different shapes depending on the type of heat treatment of the support. The Chromium Oxide used in this study was in the form of ordered films grown epitaxially on a Pd(111) crystal, while the SrTiO3 consisted of a bulk crystal doped with Nb cleaved along the (100) face. The epitaxial Chromium Oxide films were grown in situ in a surface analysis chamber by evaporating metallic Cr under 1.0x10-6 mBar of O2 pressure on to the substrate heated to 623K. The films as grown showed clear LEED (Low Energy Electron Diffraction) patterns and constant stoichiometry. Two different reconstructions were studied: p(2x2), that was present for thin films of about 3.5 Å, and (V3xV3)R30o, which is characteristic of thicker films (above 12.0 Å). The composition and detailed surface structures were determined by XPS (X-Ray Photo electron Spectroscopy) and XPD (X-Ray Photoelectron Diffraction). SrTiO3 is an insulator, but doping with Nb makes it sufficiently conducting so that it is possible to use LEED, XPS and XPD without charging problems inherent to insulating samples. Two types of radiation were used for exciting the samples: synchrotron radiation (700eV) from the SGM beam line at the Brazilian National Synchrotron Radiation Light Laboratory and conventional X-rays from Al and Mg anodes. To simulate the surface structures the MSCD package [1] was used. To accelerate the optimization of the structural parameters a genetic algorithm [2] was used in conjunction with the MSCD package. The thinner Chromium Oxide film was shown to consist of CrO with a p(2x2) reconstruction, having as first and second interlayer distances 0,16 Å and 1,92 Å respectively. The thicker Chromium Oxide film was studied as grown and after annealing at 973K. In both cases the structure was determined to be a-Cr2O3(0001), but with different surface termination. XPD revealed that the film as grown was terminated by an O monolayer, with the first interlayer distance expanded by 9.5% relative to bulk values. After annealing the film was shown to terminate in two atomic layers of Cr, who¿s interlayer distance was reduced by 68% relative to the bulk. Results for the surface of STO showed regions covered by SrO and TiO2. In both cases the cation layers relaxed inwards and the atoms of the second layer outwards, resulting in corrugated surfaces. These results compare very well with results obtained by LEED. By using the genetic algorithm [2], it was possible to show that 30% of the surface was covered by SrO(100) islands / Doutorado / Física da Matéria Condensada / Doutor em Ciências
205

An analysis of copper transport in the insulation of high voltage transformers

Whitfield, Thomas Britain January 2001 (has links)
Examination of the paper insulation and copper stress braiding during stripdown of a number of Current Transformers (FMK type 400kV) has revealed the presence of dark deposits. Copper foils are often interspersed within layers of paper insulation and mineral oil found in transformer windings. The dark deposits were often found in association with these foils, affecting several layers of paper in addition to the layer in contact with the copper foil. This thesis describes the research undertaken to identify these deposits and establish a mechanism for the transportation through the paper layers. Preliminary investigation using scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDX) has shown these dark deposits to be copper based. X-ray photoelectron spectroscopy was used to show that the transport of the copper deposit through the paper insulation was working under the influence of a diffusion controlled process, related to Fick's law. Laboratory studies in support of work designed to eliminate the problem have shown that corrosion of copper occurs in mineral oils containing a trace of oxygen. This corrosion is non protective in character and leads to migration of copper into adjacent layers of paper. It has been shown that the transport of copper through several layers of paper can be measured by XPS and that the concentration from one paper winding to the next declines in accord with Fick's law for non-steady state diffusion. Measurements of surface concentrations by XPS correlate well with measurements made with atomic absorption spectroscopy on solutions of extracts of the contaminated paper. The laboratory measurements have allowed determination of the diffusion coefficients and activation energy for the transport process and thus give a basis for interpretation of the diffusion profiles found in the transformer in terms of time and temperature of operation. The diffusion process is temperature dependant. The results have been used to produce long term prediction curves.
206

The investigation of potential corrosion resistant phosphorus containing and polymer films using x-ray photoelectron spectroscopy

Asunskis, Amy Louise January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Peter M.A. Sherwood / This dissertation will examine the fabrication of different phosphorus containing films and their use as corrosion preventative films and adhesion materials between polymers and metal and metal alloys. Orthophosphate films are used in several metals and metal alloys to prevent corrosion and promote adhesion between paints or polymers and metal substrates. One key component is to examine the use of different phosphorus containing acids that might lead to phosphorus containing films which would compliment the mainly orthophosphate films currently in use. The objectives of this study are to see if it is possible to fabricate different phosphorus containing films, use them to adhere polymers to metal and metal alloys, and test the phosphorus containing films’ and polymer films’ corrosion protection properties. The thermoplastic resin, Poly(ether ketone ketone), or PEKK was found to adhere well to different phosphorus containing films and protect the underlying layers from oxidation in 4-D water. The phosphorus containing films were created by electrochemical deposition in different 5 M phosphorus containing acids. The metal or metal alloy was abraded to remove the native oxide and treated in the electrochemical cell. The second, separate polymer films were created by dip coating the metal or metal alloy in a polymer solution. The film thickness in both cases was controlled to be less than 100Å to ensure that the underlying metal or metal alloy could be detected. The surface chemical analysis was collected using X-ray photoelectron spectroscopy, or XPS. Core level and valence band XPS were used to distinguish the differences in the chemistry at the surfaces. The valence band XPS spectra were interpreted using spectra generated by multiple scattered wave calculations and band structure calculations. In the cases were more than one film was present subtraction and addition spectrum were used to interpret the chemistry in the interface region of the films.
207

Characterisation of surfaces modified through self-assembled monolayers and click chemistry

Coates, Megan Patricia January 2013 (has links)
Different approaches to surface modification were investigated in this work on gold, glassy carbon, multi-walled carbon nanotube paper and on single-walled carbon nanotubes adsorbed on glassy carbon. These approaches include electrochemical grafting, electropolymerisation, click chemistry, axial ligation, adsorption and self-assembled monolayers. The modified surfaces were characterised using a variety of techniques; predominantly electrochemistry, scanning electrochemical microscopy and X-ray photoelectron spectroscopy. For the formation of self-assembled monolayers on gold, four new manganese(III) phthalocyanines (1a-d), octa-substituted at the peripheral position with pentylthio, decylthio, benzylthio, and phenylthio groups were synthesized and characterised. X-ray photoelectron spectroscopy was used to show the formation of a sulphur-gold bond. A number of approaches using 4-azidoaniline (2a) combined with azide-alkyne click chemistry and electrochemistry were also used to anchor ferrocene and pyridine moieties on to the carbon surfaces, including direct in situ diazotation and grafting, electropolymerisation, and the synthesis of the diazonium salt followed by grafting. Iron phthalocyanine was linked to the pyridine-clicked surfaces through axial ligation, where the strong axial bond formed by the interaction between the central metal and the lone pair of the nitrogen in the pyridine group resulted in stable modified electrodes. The potential of these surfaces for the detection of analytes such as thiocyanate, hydrazine and sulphite are briefly shown as well. This work also describes for the first time the possibility of performing local micro-electrochemical grafting of a gold substrate by 4-azidobenzenediazonium (2b) using scanning electrochemical microscopy in a single and simple one step approach, without complications from adsorption.
208

Synchrotron radiation based characterization of structural evolution of alkali halide clusters

Hautala, L. (Lauri) 04 December 2017 (has links)
Abstract In this work, evolution of structural properties of anhydrous and hydrated alkali halide clusters are studied using synchrotron radiation based photoelectron spectroscopy. Alkali metal core level spectra of small anhydrous RbCl, RbBr, CsCl and CsBr clusters indicate a NaCl structure. For larger CsBr clusters a structural phase transition to CsCl structure is likely the case. Alkali halide core level spectra of mixed RbBr-water clusters indicate that at dilute concentration the salt is dissolved by the water cluster but ion pairing increases with concentration. Modeling of gas phase cluster formation and electronic structure calculations of core level chemical shifts are used to interpret the experimental spectra.
209

Chemistry and physics of diamond surfaces

Domke, Andreas January 1999 (has links)
This thesis is concerned with the chemistry and physics of C(100) surfaces of diamond. The polished and cleaned C(100) surface is examined by surface microscopy (Atomic-force Microscopy), electron diffraction (Low-energy Electron Diffraction) and photoemission (X-ray Photoelectron Spectroscopy and Ultra-violet Photoelectron Spectroscopy). Results are presented on the presence of oxygen, nitrogen and hydrogen/deuterium on the C(100) surface. Finally, the valence band structure of diamond is probed by angle-resolved photoemission. We have confirmed by AFM that the grooves from the soft polishing process are present on a polished C(100) surface and found sporadic traces of hard polish on a surface polished in the soft polishing direction. XPS studies have verified heating cycles by electron beam bombardment as a suitable cleaning procedure for pure reconstructed C(100) surfaces. By allowing the crystal to cool slowly, the first experimental evidence of quarter-order LEED spots have been found, which suggest that buckled dimerisation might have occurred similar to those on Si(100) and Ge(100). We present the first experimental electron spectroscopy results for a nitrogen impurity in diamond by showing the N KLL Auger spectrum. An attempt to smooth a C(100) surface of diamond by an atomic hydrogen plasma did not succeed. AFM studies showed no evidence for the surface smoothing reported in other studies, but the results enable us to explain the different plasma published in the literature. The valence band of diamond is investigated by off-normal ARUPS. The features observed are consistent with possible transitions, which are determined using bulk band structure calculations and comparison with the experimental binding energies.
210

Modelové systémy s využitím CeO2 pro bioaplikaci / Model systems with the use of CeO2 for bioapplication

Bercha, Sofiia January 2020 (has links)
Title: Model systems with the use of CeO2 for bioapplication Author: Sofiia Bercha Department: Department of Surface and Plasma Science Supervisor: Ing. Nataliya Tsud Ph.D., Department of Surface and Plasma Science Abstract: This thesis is focused on the investigation of model systems for bioapplications. Interfaces between biomolecules and inorganic materials were studied by means of advanced surface science techniques with emphasis on the molecular electronic structure and bonding geometry as a function of material morphology and/or molecular deposition method. For the histidine/cerium oxide system it is demonstrated that the morphology of the oxide determines the mechanism of the molecular adsorption. The presence of an aqueous medium does not alter the histidine interaction with the nanostructured cerium oxide. For the adenine/cerium oxide system we have shown that the adenine molecule chemisorbs on CeO2 intact via nitrogen atoms, independent of the oxide morphology and deposition technique. The adenine molecule was found to decompose on a reduced surface of the cerium oxide. Combining experimental and theoretical methods two distinct phases of adenine on CeO2 were found. For adenine/Cu(111) system it was shown that the strong interaction with the surface keeps the molecule intact on the surface till...

Page generated in 0.0665 seconds