• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 15
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 45
  • 35
  • 27
  • 23
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Very Low Albedo of WASP-12b from Spectral Eclipse Observations with Hubble

Bell, Taylor J., Nikolov, Nikolay, Cowan, Nicolas B., Barstow, Joanna K., Barman, Travis S., Crossfield, Ian J. M., Gibson, Neale P., Evans, Thomas M., Sing, David K., Knutson, Heather A., Kataria, Tiffany, Lothringer, Joshua D., Benneke, Björn, Schwartz, Joel C. 14 September 2017 (has links)
We present an optical eclipse observation of the hot Jupiter WASP-12b using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These spectra allow us to place an upper limit of A(g) < 0.064 (97.5% confidence level) on the planet's white light geometric albedo across 290-570 nm. Using six wavelength bins across the same wavelength range also produces stringent limits on the geometric albedo for all bins. However, our uncertainties in eclipse depth are similar to 40% greater than the Poisson limit and may be limited by the intrinsic variability of the Sun-like host star-the solar luminosity is known to vary at the 10(-4) level on a timescale of minutes. We use our eclipse depth limits to test two previously suggested atmospheric models for this planet: Mie scattering from an aluminum-oxide haze or cloud-free Rayleigh scattering. Our stringent nondetection rules out both models and is consistent with thermal emission plus weak Rayleigh scattering from atomic hydrogen and helium. Our results are in stark contrast with those for the much cooler HD 189733b, the only other hot Jupiter with spectrally resolved reflected light observations; those data showed an increase in albedo with decreasing wavelength. The fact that the first two exoplanets with optical albedo spectra exhibit significant differences demonstrates the importance of spectrally resolved reflected light observations and highlights the great diversity among hot Jupiters.
22

Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

Christiansen, Jessie L., Vanderburg, Andrew, Burt, Jennifer, Fulton, B. J., Batygin, Konstantin, Benneke, Björn, Brewer, John M., Charbonneau, David, Ciardi, David R., Cameron, Andrew Collier, Coughlin, Jeffrey L., Crossfield, Ian J. M., Dressing, Courtney, Greene, Thomas P., Howard, Andrew W., Latham, David W., Molinari, Emilio, Mortier, Annelies, Mullally, Fergal, Pepe, Francesco, Rice, Ken, Sinukoff, Evan, Sozzetti, Alessandro, Thompson, Susan E., Udry, Stéphane, Vogt, Steven S., Barman, Travis S., Batalha, Natasha E., Bouchy, François, Buchhave, Lars A., Butler, R. Paul, Cosentino, Rosario, Dupuy, Trent J., Ehrenreich, David, Fiorenzano, Aldo, Hansen, Brad M. S., Henning, Thomas, Hirsch, Lea, Holden, Bradford P., Isaacson, Howard T., Johnson, John A., Knutson, Heather A., Kosiarek, Molly, López-Morales, Mercedes, Lovis, Christophe, Malavolta, Luca, Mayor, Michel, Micela, Giuseppina, Motalebi, Fatemeh, Petigura, Erik, Phillips, David F., Piotto, Giampaolo, Rogers, Leslie A., Sasselov, Dimitar, Schlieder, Joshua E., Ségransan, Damien, Watson, Christopher A., Weiss, Lauren M. 31 August 2017 (has links)
HD 3167 is a bright (V = 8.9), nearby KO star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial-velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02 +/- 0.38 M-circle plus for HD 3167 b, a hot super-Earth with a likely rocky composition (rho(b) = 5.6(-1.43)(+2.15) g cm(-3)), and 9.80(-1.24)(+1.30) M-circle plus for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho(c) = 1.97(-0.59)(+0.94) g cm(-3)). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509 +/- 0.045 d (between planets b and c) and a minimum mass of 6.90 +/- 0.71 M-circle plus. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.degrees 3 because we do not observe transits of planet d. From 1.degrees 3 to 40 degrees, there are viewing geometries invoking special nodal configurations, which result in planet d not transiting some fraction of the time.
23

Understanding extreme quasar optical variability with CRTS – I. Major AGN flares

Graham, Matthew J., Djorgovski, S. G., Drake, Andrew J., Stern, Daniel, Mahabal, Ashish A., Glikman, Eilat, Larson, Steve, Christensen, Eric 10 1900 (has links)
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Delta m = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
24

An Analysis of Two Photometric Redshift Methods and Their Uses for Finding Void Galaxies

Steele, Rochelle J. 17 December 2021 (has links)
An extensive survey of extragalactic objects with accurate distances is difficult to perform. Distance at that scale is commonly found with redshift and most easily identified with spectroscopic observations, which are time intensive. This is especially a concern when surveying for the elusive, possibly non-existent dwarf galaxies in the centers of voids, whose light would be so faint that a spectroscopic survey to find them would be unreasonably time consuming. Photometric methods to calculate redshift could provide a much quicker way to find distance, but the photometric methods used thus far are characterized by large errors that make them unusable for research on nearby voids. I have been testing two photometric redshift methods that have been recently developed: the Gaussian filter method and the ramp filters method. The Gaussian filter method isolates objects that have emission within the bandpass of the Gaussian filters. Spectroscopic follow-up observations of objects observed with the Gaussian filter method confirmed that 41.9% of the objects identified by the method actually had emission lines within the bandpass of the filters, which is more than a random sampling where only 7% of galaxies had emission within that wavelength range. Assuming that all the lines identified were Hα, the photometric redshift calculated from the Gaussian filter observations had an error of 945 km/s (or 430 km/s by excluding one outlier). Ramp filter observations of objects with SDSS redshifts provided a way to identify redshift with an error of 641.8 km/s. These errors are about an order of magnitude less than other redshift methods. These methods show promise for uses in observational cosmology, specifically extragalactic survey work and searching for void galaxies.
25

Photometric stereo for micro-scale shape reconstruction

Li, Boren 13 February 2017 (has links)
This dissertation proposes an approach for 3D micro-scale shape reconstruction using photometric stereo (PS) with surface normal integration (SNI). Based on the proposed approach, a portable cost-effective stationary system is developed to capture 3D shapes in the order of micrometer scale. The PS with SNI technique is adopted to reconstruct 3D microtopology since this technique is highlighted for its capability to reproduce fine surface details at pixel resolution. Furthermore, since the primary hardware components are merely a camera and several typical LEDs, the system based on PS with SNI can be made portable at low cost. The principal contributions are three folds. First, a PS method based on dichromatic reflectance model (DRM) using color input images is proposed to generalize PS applicable to a wider range of surfaces with non-Lambertian reflectances. The proposed method not only estimates surface orientations from diffuse reflection but also exploits information from specularities owing to the proposed diffuse-specular separation algorithm. Using the proposed PS method, material-dependent features can be simultaneously extracted in addition to surface orientations, which offers much richer information in understanding the 3D scene and poses more potential functionalities, such as specular removal, intrinsic image decomposition, digital relighting, material-based segmentation, material transfer and material classification. The second contribution is the development of an SNI method dealing with perspective distortion. The proposed SNI is performed on the image plane instead of on the target surface as did by orthographic SNI owing to the newly derived representation of surface normals. The motivation behind the representation is from the observation that spatially uniform image points are simpler for integration than the non-uniform distribution of surface points under perspective projection. The new representation is then manipulated to the so-called log gradient space in analogy to the gradient space in orthographic SNI. With this analogy, the proposed method can inherit most past algorithms developed for orthographic SNI. By applying the proposed SNI, perspective distortion can be efficiently tackled with for smooth surfaces. In addition, the method is PS-independent, which can keep the image irradiance equation in a simple form during PS. The third contribution is the design and calibration of a 3D micro-scale shape reconstruction system using the derived PS and SNI methods. This system is originally designed for on-site measurement of pavement microtexture, while its applicability can be generalized to a wider range of surfaces. Optimal illumination was investigated in theory and through numerical simulations. Five different calibrations regarding various aspects of the system were either newly proposed or modified from existing methods. The performances of these calibrations were individually evaluated. Efficacy of the developed system was finally demonstrated through comprehensive comparative studies with existing systems. Its capability for on-site measurement was also confirmed. / Ph. D.
26

Differential rotation in Sun-like stars from surface variability and asteroseismology

Nielsen, Martin Bo 22 April 2016 (has links)
No description available.
27

DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE

Evans, Thomas M., Sing, David K., Wakeford, Hannah R., Nikolov, Nikolay, Ballester, Gilda E., Drummond, Benjamin, Kataria, Tiffany, Gibson, Neale P., Amundsen, David S., Spake, Jessica 21 April 2016 (has links)
We present a primary transit observation for the ultra-hot (T-eq similar to 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 mu m wavelength range. The 1.4 mu m water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 mu m wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
28

Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents

Landon, Jr., George V. 01 January 2008 (has links)
Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets.
29

Measuring the Environmental Dependence of Galaxy Haloes with Weak Lensing

Gillis, Bryan January 2013 (has links)
We investigate the uses of gravitational lensing for analysing the dark matter haloes around galaxies, comparing galaxies within groups and clusters to those in the field. We consider two cases: when only photometric redshift data is available, and when spectroscopic redshift data is available for a sufficiently large sample of galaxies. For the case of data with photometric redshifts, we analyse the CFHTLenS dataset. This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 deg^2 of high-quality shape data. Using the photometric redshifts to estimate local density, we divide the sample of lens galaxies with stellar masses in the range 10^9 Msun to 10^10.5 Msun into those likely to lie in high-density environments (HDE) and those likely to lie in low-density environments (LDE). Through comparison with galaxy catalogues extracted from the Millennium Simulation, we show that the sample of HDE galaxies should primarily (~61%) consist of satellite galaxies in groups, while the sample of LDE galaxies should consist of mostly (~87%) non-satellite (field and central) galaxies. Comparing the lensing signals around samples of HDE and LDE galaxies matched in stellar mass, we show that the subhaloes of HDE galaxies are less massive than those around LDE galaxies by a factor 0.65+/-0.12, significant at the 2.9 sigma level. A natural explanation is that the haloes of satellite galaxies are stripped through tidal effects in the group environment. Our results are consistent with a typical tidal truncation radius of ~40 kpc. For the case of data with spectroscopic redshifts, we analyse the GAMA-I and the ongoing GAMA-II surveys. We demonstrate the possibility of detecting tidal stripping of dark matter subhaloes within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups, using various models with different distributions of mass between galaxy and group haloes to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites' lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 10^12 Msun to 10^15 Msun.
30

Galaxy evolution and the redshift desert

Kotulla, Ralf Christian January 2011 (has links)
This thesis explores the evolution of galaxies from the onset of star formation shortly after the Big Bang until the present day. Particular emphasis lies on the redshift range z = 1.4 2.5, the so-called “redshift desert”, as it coincides with the peak epoch of cosmic star formation activity and mass assembly. Most of the information about galaxies and their evolution arrives in the form of their integrated light, i.e. the conglomeration of light emitted by stars of various ages and metallicities. In order to interpret the observed spectra and magnitudes, and to extract the physical parameters we therefore require models. This holds true in particular for galaxies too faint to target them spectroscopically, and for which redshifts and physical parameters derived from only their photometry is the only feasible way to study them in more detail. This thesis is concerned with such models, and describes how GALEV evolutionary synthesis models describe the spectral and chemical evolution of galaxies, accounting for gaseous emission and the increasing initial abundances of successive stellar generations, how they compare to observations and what we can learn from their application. Based on a large model grid, covering all observed galaxy evolution stages, I find that sub-solar metallicities have significant impact on the spectra of galaxies, and can lead to systematic errors and biases if not accounted for. A comparison of models with different metallicities furthermore reveals that photometric redshifts are also systematically biased if sub-solar metallicities are not properly accounted for. I also note that even a small mass-fractions of young stars can dominate the overall spectrum, leading to a large underestimation of the mass and age of the stellar population. The models explain not only the colour evolution of galaxies observed at a range of redshifts, but also their physical parameters. I show that with magnitudes in only a few bands we can successfully explain not only the masses of galaxies, but also their star formation rates and, where available from observations, their metallicities. If additional data are available, the grid of models can be used to refine colour selection criteria and to break degeneracies, e.g. between dust-reddened actively star-forming galaxies and intrinsically old, passively evolving galaxies. Using GAZELLE, a photometric redshift code that is purpose-tailored to harmonise with these models, I can extract accurate redshifts and a wealth of physical parameters from the largest ever sample of observed multi-wavelength photometry of galaxies. I then compare our findings with semi-analytical models that trace the evolution of individual galaxies based on cosmological simulations. In my sample I find a significant population of high-mass galaxies that is not accounted for by this class of models. Furthermore a small percentage of massive, yet starforming galaxies challenges our idea on how these galaxies form and evolve. In an appendix to this thesis I present a complementary approach to reconstruct the evolution of galaxies, using star clusters as tracers. I introduce a new technique to break the age-metallicity degeneracy and obtain individual ages and metallicities for a sample of globular clusters, revealing a merger of two Sb/Sc-type spirals 2 Gyrs ago in NGC 4570, a lenticular galaxy in the Virgo cluster. Also in the appendix I show that, at least in the studied galaxy Arp 78, the initial mass function conforms with our assumptions and does not change in low-density environments as recently predicted. Although studies of galaxy evolution are a major field in astronomy, there is still a lot more to be done to reveal the inner workings of these island universes, and this thesis also addresses how to continue and improve the work presented herein.

Page generated in 0.0529 seconds