• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photon Statistics in Scintillation Crystals

Bora, Vaibhav Joga Singh January 2015 (has links)
Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are field-tested, relatively inexpensive, and have good detection efficiency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often defined by the Fano factor. The Fano factor of an integer-valued random process is defined as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI₂:Eu, YAP:Ce and CsI:Na. We also found an empirical relationship between the Fano factor and the covariance as a function of time between two detectors looking at the same scintillation pulse. This empirical model was used to estimate the Fano factor of LaBr₃:Ce and YAP:Ce using the experimentally measured timing-covariance. The estimates of the Fano factor from the time-covariance results were consistent with the estimates of the correlation between the integral signals. We found scintillation light from some scintillators to be sub-Poisson. For the same mean number of total scintillation photons, sub-Poisson light has lower noise. We then conducted a simulation study to investigate whether this low-noise sub-Poisson light can be used to improve spatial resolution. We calculated the Cramér-Rao bound for different detector geometries, position of interactions and Fano factors. The Cramér-Rao calculations were verified by generating simulated data and estimating the variance of the maximum likelihood estimator. We found that the Fano factor has no impact on the spatial resolution in gamma-ray imaging systems.
2

Towards Violation of Classical Inequalities using Quantum Dot Resonance Fluorescence

Peiris, Manoj 05 July 2017 (has links)
Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the scattered light exhibits a rich spectrum containing many spectral features that lead to a range of nonlinear multiphoton dynamics. These observations are discussed and compared with a theoretical model. Second, we investigated the light scattered by a quantum dot in the presence of spectral filtering. By scanning the tunable filters placed in front of each detector of a Hanbury-Brown and Twiss setup and recording coincidence measurements, a \two-photon spectrum" has been experimentally reconstructed for the first time. The two-photon spectrum contains a wealth of information about the cascaded emission involved in the scattering process, such as transitions occurring via virtual intermediate states. Our measurements also reveal that the scattered frequency-filtered light from a quantum dot violates the Cauchy-Schwarz inequality. Finally, Franson-interferometry has been performed using spectrally filtered light from quantum dot resonance fluorescence. Visibilities exceeding the classical limit were demonstrated by using a pair of folded Mach-Zehnder interferometers, paving the way for producing single time-energy entangled photon pairs that could violate Bell's inequalities.
3

Generation and detection of non-classical photon states / Generation och detektion av icke-klassiska fotontillstånd

Stensson, Katarina January 2018 (has links)
This thesis intends to familiarize the reader with the concepts of photon statistics and correlations in quantum optics. Developing light sources that emit quantum states is central for the realization of quantum technologies. One important step in characterizing these sources is the measurement of field fluctuations and correlations, by coincidence measurements. The expectation value of a coincidence measurement, a simultaneous measurement of two intensities (or, more general, four fields), is represented by the fourth-order correlation function. The value of the correlation function, at zero delay between the detection of two photons, reveals important properties of the state to which they belonged, for example the fluctuations of the photon number. Since predictability is important for many applications, light sources emitting single photons are also characterized by the indistinguishability of consecutively emitted photons, or of two photons from separate emitters. In paper I we investigate blinking behaviour in quantum emitters, and its effect on the interference pattern and photon statistics with photons from two separate emitters. Blinking refers to an emitters transition into a non-emitting state, and subsequent transition back to an emitting state. We show that blinking can not be treated as linear loss, when measuring the fourth-order correlation function for two emitters in a Hong-Ou-Mandel setup. In general, a measurement of the fourth-order correlation function is robust to loss, which makes it a very practical tool. However, the relation between recorded coincidence counts and the correlation function is only direct in the limit of zero detection efficiency, and depends on the detection system. In paper II, we show that by adding a variable attenuation in the beam path, we can trace back to the ''true'' value of the correlation function at zero quantum efficiency. This method improves accuracy in correlation measurements by decreasing a systematic error at the expense of an increased statistical error, which is easier to handle, extending the use of coincidence methods to classical and non-classical multi-photon states. / <p>QC 20180517</p>
4

Narrow-band single photons as carriers of quantum information

Höckel, David 13 January 2011 (has links)
Die Nutzung von Quanteneigenschaften für die Informationsverarbeitung, die sogenannte Quanteninformationsverarbeitung (QIP), ist ein seit zwei Jahrzehnten zunehmend populäres Forschungsfeld. Es hat sich gezeigt, dass Einzelphotonen die am besten geeigneten Träger für den Transport von Quanteninformation über weite Strecken sind. Obwohl viele Methoden zur Erzeugung von Einzelphotonen existieren, wurde bisher nur wenig Forschungsarbeit an schmalbandigen Einzelphotonen, d.h. mit spektralen Breiten im MHz-Bereich geleistet. Allerdings sind solche Einzelphotonen besonders wichtig, wenn Kopplungen zwischen Einzelphotonen und atomaren Systemen, die oft als Verarbeitungseinheiten in der QIP genutzt werden, realisiert werden sollen. Diese Doktorarbeit befasst sich mit mehreren Forschungsaspekten zu schmalbandigen Einzelphotonen, die von Bedeutung sind, wenn solche Photonen als Informationsträger genutzt werden sollen. Zunächst wird eine Quelle von schmalbandigen Einzelphotonen vorgestellt, die auf dem Konzept der parametrischen Fluoreszenz innerhalb eines optischen Resonators basiert und die einen konstanten Strom von Photonenpaaren emittiert. Eine statistische Beschreibung dieser Photonenpaare wird vorgestellt und erstmals direkt gemessen. Um Emission in nur eine einzelne Mode zu erreichen, wurde der Photonenstrom mit Hilfe eines speziell entwickelten Mehrpass-Fabry-Perot-Etalons mit geringem Durchlassbereich und sehr hohem Kontrast gefiltert. Photon-Atom-Wechselwirkungen werden im zweiten Teil der Arbeit gezeigt. Der Effekt der elektromagnetisch induzierten Transparenz (EIT) wird vorgestellt und experimentell demonstriert. Die ersten EIT Experimente in Cäsiumgaszellen bei Raumtemperatur mit Probepulsen, die nur ein einzelnes Photon enthalten, werden demonstriert. Schließlich zeigt ein umfassender Ausblick wie die entwickelten experimentellen Bausteine erweitert werden können, um Einzelphotonenspeicherung zu erlauben und die Technologie für Quantenrepeater zu demonstrieren. / The use of quantum mechanical properties for information processing, so-called quantum information processing (QIP) has become an increasingly popular research field in the last two decades. It turned out that single photons are the most reliable long distance carriers of quantum information, e.g., tools to connect different processing nodes in QIP. While several methods exist to produce single photons, only little research has been performed so far on narrow-band single photons with spectral bandwidths in the MHz regime. Such photons are, however, of particular importance when coupling of single photons to atomic systems, which are often used in QIP as processing nodes, shall be realized. This thesis covers several research aspects on narrow-band single photons, all of which are important if such photons should be used as quantum information carriers. At first, a source for narrow-band single photons is introduced. This source is based on the concept of parametric down-conversion inside an optical resonator. It emits a constant stream of photon pairs. One of the two photons from the pair can be detected heralding the presence of the other photon. A statistical description of these photon pairs is introduced and for the first time also directly measured. In order to reach single-mode single-photon emission, the stream of photons was filtered with a specifically developed multi-pass Fabry-Perot etalon. This filter has a passband FWHM of only 165 MHz and particularly high contrast.
5

Photon Statistics in Disordered Lattices

Kondakci, Hasan 01 January 2015 (has links)
Propagation of coherent waves through disordered media, whether optical, acoustic, or radio waves, results in a spatially redistributed random intensity pattern known as speckle -- a statistical phenomenon. The subject of this dissertation is the statistics of monochromatic coherent light traversing disordered photonic lattices and its dependence on the disorder class, the level of disorder and the excitation configuration at the input. Throughout the dissertation, two disorder classes are considered, namely, diagonal and off-diagonal disorders. The latter exhibits disorder-immune chiral symmetry -- the appearance of the eigenmodes in skew-symmetric pairs and the corresponding eigenvalues in opposite signs. When a disordered photonic lattice, an array of evanescently coupled waveguides, is illuminated with an extended coherent optical field, discrete speckle develops. Numerical simulations and analytical modeling reveal that discrete speckle shows a set of surprising features, that are qualitatively indistinguishable in both disorder classes. First, the fingerprint of transverse Anderson localization -- associated with disordered lattices, is exhibited in the narrowing of the spatial coherence function. Second, the transverse coherence length (or speckle grain size) freezes upon propagation. Third, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. When a single lattice site is coherently excited, I discovered that a thermalization gap emerges for light propagating in disordered lattices endowed with disorder-immune chiral symmetry. In these systems, the span of sub-thermal photon statistics is inaccessible to the input coherent light, which -- once the steady state is reached -- always emerges with super-thermal statistics no matter how small the disorder level. An independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed is formulated. This unique feature enables a new form of photon-statistics interferometry: by exciting two lattice sites with a variable relative phase, as in a traditional two-path interferometer, the excitation-symmetry of the chiral mode pairs is judiciously broken and interferometric control over the photon statistics is exercised, spanning sub-thermal and super-thermal regimes. By considering an ensemble of disorder realizations, this phenomenon is demonstrated experimentally: a deterministic tuning of the intensity fluctuations while the mean intensity remains constant. Finally, I examined the statistics of the emerging light in two different lattice topologies: linear and ring lattices. I showed that the topology dictates the light statistics in the off-diagonal case: for even-sited ring and linear lattices, the electromagnetic field evolves into a single quadrature component, so that the field takes discrete phase values and is non-circular in the complex plane. As a consequence, the statistics become super-thermal. For odd-sited ring lattices, the field becomes random in both quadratures resulting in sub-thermal statistics. However, this effect is suppressed due to the transverse localization of light in lattices with high disorder. In the diagonal case, the lattice topology does not play a role and the transmitted field always acquires random components in both quadratures, hence the phase distribution is uniform in the steady state.

Page generated in 0.107 seconds