• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biogratings: Diffractive Transducers for Biosensing in Photonic Platforms

Juste Dolz, Augusto Miguel 15 June 2023 (has links)
Tesis por compendio / [ES] El desarrollo científico y tecnológico de las últimas décadas ha dado lugar a sistemas sensores capaces de obtener, procesar y transmitir información sobre multitud de aspectos físicos y químicos, y utilizarla para mejorar aspectos clave de multitud de áreas de nuestra sociedad. Los sensores químicos son dispositivos compactos y miniaturizados capaces de ofrecer soluciones alternativas a las técnicas de análisis instrumental convencionales. En especial, los biosensores han adquirido gran relevancia por los avances que han supuesto para sectores estratégicos como el diagnóstico clínico, la industria alimentaria y el medio ambiente. Los biosensores ópticos se basan en interacciones entre la luz y la materia para transducir eventos de bioreconocimiento y presentan prestaciones importantes como la estabilidad, inmunidad a estímulos externos y versatilidad en el desarrollo de aproximaciones sin marcaje (label-free). Este último aspecto suele aprovechar fenómenos nanoscópicos y su desarrollo se encuentra muy ligado al progreso de la nanociencia y nanotecnología. Un aspecto clave en el biosensado sin marcaje consiste en descubrir y desarrollar nuevas estrategias de transducción. En este sentido, aunque se encuentren aun en una etapa temprana de desarrollo, los biosensores difractivos presentan un gran potencial en términos de simplicidad, miniaturización, y capacidad para minimizar señales no deseadas fruto de interacciones no específicas, entre otros aspectos. / [CA] El desenvolupament científic i tecnològic de les últimes dècades ha donat lloc a sistemes sensors capaços d'obtindre, processar i transmetre informació sobre multitud d'aspectes físics i químics, i utilizar-la per a millorar aspectes clau de multitud d'arees de la nostra societat. Els sensors químics són dispositius compactes i miniaturitzats capaços d'oferir solucions alternatives a les tècniques d'analisi instrumental convencionals. Especialment, els biosensors han adquirit gran rellevància pels avanços que han suposat per als sectors estratègics com el diagnòstic clínic, la industria alimentària i el medi ambient. Els biosensors òptics es basen en interaccions entre la llum i la matèria per a transduir esdeveniments de bioreconèixement i presenten prestacions importants com estabilitat, immunitat a estímuls externs i versatilitat en el desenvolupament d'aproximacions sense marcatge (label-free). Aquest últim aspecte sol aprofitat fenòmens nanoscòpics i el seu desenvolupament es troba molt lligat al progrés de la nanociència i nanotecnologia. Un aspecte clau en el biosensat sense marcatge consisteix a descobrir i desenvolupar noves estratègies de transducció. En aquest sentit, encara que es troben fins i tot en una etapa primerenca de desenvolupament, els biosensors difractius presenten un gran potencial en termes de simplicitat, miniaturització, i capacitat per a minimitzar senyals no desitjats fruit d'interaccions no específiques, entre altres aspectes. / [EN] The scientific and technological progress in recent decades has given rise to sensor systems capable of obtaining, processing, and transmitting information on a multitude of physical and chemical aspects and using it to improve key aspects of many areas of our society. Chemical sensors are compact, miniaturized devices capable of offering alternative solutions to conventional instrumental analysis techniques. In particular, biosensors have become highly relevant due to the progress they have brought to strategic sectors such as clinical diagnostics, the food industry, and the environment. Optical biosensors rely on interactions between light and matter to transduce biosensing events and provide important features such as stability, immunity to external stimuli, and versatility in the development of label-free approaches. This last aspect usually exploits nanoscopic phenomena and its development in closely linked to the progress in nanoscience and nanotechnology. A key aspect of label-free biosensing is the discovery and development of new transduction strategies. In this regard, although they are at an early stage of development, diffractive biosensors offer great potential in terms of simplicity, miniaturization, and the ability to minimize unwanted signals from non-specific interactions, among other aspects. / This work was financially supported by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) co-funded by the European Union “ERDF A way of making Europe” (PID2019-110713RB-I00, TED2021-132584B-C21, PID2019-110877GB-I00), Ministerio de Economía y Competitividad (TEC2016-80385-P), Generalitat Valenciana (PROMETEO/2019/048 PROMETEO/2020/094, PROMETEO/2021/015, IDIFEDER/2021/046). A.J.D. ackowledges the FPI-UPV 2017 grant program. The authors acknowledge Instituto de Microelectrónica de Barcelona CNM-CSIC for the support in the fabrication of the measured chip samples on the Multiproject CNM-VLC silicon nitride technology platform. / Juste Dolz, AM. (2023). Biogratings: Diffractive Transducers for Biosensing in Photonic Platforms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194251 / Compendio
2

Multipurpose Programmable Integrated Photonics: Principles and Applications

López Hernández, Aitor 06 September 2023 (has links)
[ES] En los últimos años, la fotónica integrada programable ha evolucionado desde considerarse un paradigma nuevo y prometedor para implementar la fotónica a una escala más amplia hacia convertirse una realidad sólida y revolucionaria, capturando la atención de numerosos grupos de investigación e industrias. Basada en el mismo fundamento teórico que las matrices de puertas lógicas programables en campo (o FPGAs, en inglés), esta tecnología se sustenta en la disposición bidimensional de bloques unitarios de lógica programable (en inglés: PUCs) que -mediante una programación adecuada de sus actuadores de fase- pueden implementar una gran variedad de funcionalidades que pueden ser elaboradas para operaciones básicas o más complejas en muchos campos de aplicación como la inteligencia artificial, el aprendizaje profundo, los sistemas de información cuántica, las telecomunicaciones 5/6-G, en redes de conmutación, formando interconexiones en centros de datos, en la aceleración de hardware o en sistemas de detección, entre otros. En este trabajo, nos dedicaremos a explorar varias aplicaciones software de estos procesadores en diferentes diseños de chips. Exploraremos diferentes enfoques de vanguardia basados en la optimización computacional y la teoría de grafos para controlar y configurar con precisión estos dispositivos. Uno de estos enfoques, la autoconfiguración, consiste en la síntesis automática de circuitos ópticos -incluso en presencia de efectos parasitarios como distribuciones de pérdidas no uniformes a lo largo del diseño hardware, o bajo interferencias ópticas y eléctricas- sin conocimiento previo sobre el estado del dispositivo. Hay ocasiones, sin embargo, en las que el acceso a esta información puede ser útil. Las herramientas de autocalibración y autocaracterización nos permiten realizar una comprobación rápida del estado de nuestro procesador fotónico, lo que nos permite extraer información útil como la corriente eléctrica que suministrar a cada actuador de fase para cambiar el estado de su PUC correspondiente, o las pérdidas de inserción de cada unidad programable y de las interconexiones ópticas que rodean a la estructura. Estos mecanismos no solo nos permiten identificar rápidamente cualquier PUC o región del chip defectuosa en nuestro diseño, sino que también revelan otra alternativa para programar circuitos fotónicos en nuestro diseño a partir de valores de corriente predefinidos. Estas estrategias constituyen un paso significativo para aprovechar todo el potencial de estos dispositivos. Proporcionan soluciones para manejar cientos de variables y gestionar simultáneamente múltiples acciones de configuración, una de las principales limitaciones que impiden que esta tecnología se extienda y se convierta en disruptiva en los próximos años. / [CA] En els darrers anys, la fotònica integrada programable ha evolucionat des de considerarse un paradigma nou i prometedor per implementar la fotònica a una escala més ampla cap a convertir-se en una realitat sòlida i revolucionària, capturant l'atenció de nombrosos grups d'investigaciò i indústries. Basada en el mateix fonament teòric que les matrius de portes lògiques programable en camp (o FPGAs, en anglès), aquesta tecnología es sustenta en la disposición bidimensional de blocs units lògics programables (en anglès: PUCs) que -mitjançant una programación adequada dels seus actuadors de fase- poden implementar una gran varietat de funcionalitats que poden ser elaborades per a operacions bàsiques o més complexes en molts camps d'aplicació com la intel·ligència artificial, l'aprenentatge profund, els sistemes d'informació quàntica, les telecomunicacions 5/6-G, en xarxes de comutació, formant interconnexions en centres de dades, en l'acceleració de hardware o en sistemes de detecció, entre d'altres. En aquest treball, ens dedicarem a explorar diverses capatitats de programari d'aquests processadors en diferents dissenys de xips. Explorem diferents enfocaments de vanguardia basats en l'optimització computacional i la teoría de grafs per controlar i configurar amb precisió aquests dispositius. Un d'aquests enfocaments, l'autoconfiguració, tracta de la síntesi automática de circuits òptics -fins i tot en presencia d'efectes parasitaris com ara pèrdues no uniformes o crosstalk òptic i elèctric- sense cap coneixement previ sobre l'estat del dispositiu. Tanmateix, hi ha ocasions en les quals l'accés a aquesta información pot ser útil. Les eines d'autocalibració i autocaracterització ens permeten realizar una comprovació ràpida de l'estat del nostre procesador fotònic, el que ens permet obtener informació útil com la corrent eléctrica necessària per alimentar cada actuador de fase per canviar l'estat del seu PUC corresponent o la pèrdua d'inserció de cada unitat programable i de les interconnexions òptiques que envolten l'estructura. Aquests mecanisms no només ens permeten identificar ràpidament qualsevol PUC o área del xip defectuosa en el nostre disseny , sinó que també ens mostren una altra alternativa per programar circuits fotònics en el nostre disseny a partir de valors de corrent predefinits. Aquestes estratègies constitueixen un pas gegant per a aprofitar tot el potencial d'aquests dispositius. Proporcionen solucions per a gestionar centenars de variables i alhora administrar múltiples accions de configuració, una de les principals limitacions que impideixen que aquesta tecnología esdevingui disruptiva en els pròxims anys. / [EN] In recent years, programmable integrated photonics (PIP) has evolved from a promising, new paradigm to deploy photonics to a larger scale to a solid, revolutionary reality, bringing up the attention of numerous research and industry players. Based on the same theoretical foundations than field-programmable gate arrays (FPGAs), this technology relies on common, two-dimensional integrated optical hardware configurations based on the interconnection of programmable unit cells (PUCs), which -by suitable programming of their phase actuators- can implement a variety of functionalities that can be elaborated for basic or more complex operation in many application fields, such as artificial intelligence, deep learning, quantum information systems, 5/6-G telecommunications, switching, data center interconnections, hardware acceleration and sensing, amongst others. In this work, we will dedicate ourselves to explore several software capabilities of these processors under different chip designs. We explore different cutting-edge approaches based on computational optimization and graph theory to precisely control and configure these devices. One of these, self-configuration, deals with the automated synthesis of optical circuit configurations -even in presence of parasitic effects such as nonuniform losses, optical and electrical crosstalk- without any need for prior knowledge about hardware state. There are occasions, though, in which accessing to this information may be of use. Self-calibration and self-characterization tools allow us to perform a quick check to our photonic processor's status, allowing us to retrieve useful pieces of information such as the electrical current needed to supply to each phase actuator to change its corresponding PUC state arbitrarily or the insertion loss of every unit cell and optical interconnection surrounding the structure. These mechanisms not only allow us to quickly identify any malfunctioning PUCs or chip areas in our design, but also reveal another alternative to program photonic circuits in our design from current pre-sets. These strategies constitute a gigantic step to unleash all the potential of these devices. They provide solutions to handle with hundreds of variables and simultaneously manage multiple configuration actions, one of the main limitations that prevent this technology to scale up and become disruptive in the years to come. / López Hernández, A. (2023). Multipurpose Programmable Integrated Photonics: Principles and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196867
3

Structures, Circuits and Architectures for Molecular Scale Integrated Sensing and Computing

Pistol, Constantin January 2009 (has links)
<p>Nanoscale devices offer the technological advances to enable a new era in computing. Device sizes at the molecular-scale have the potential to expand the domain of conventional computer systems to reach into environments and application domains that are otherwise impractical, such as single-cell sensing or micro-environmental monitoring.</p><p>New potential application domains, like biological scale computing, require processing elements that can function inside nanoscale volumes (e.g. single biological cells) and are thus subject to extreme size and resource constraints. In this thesis we address these critical new domain challenges through a synergistic approach that matches manufacturing techniques, circuit technology, and architectural design with application requirements. We explore and vertically integrate these three fronts: a) assembly methods that can cost-effectively provide nanometer feature sizes, b) device technologies for molecular-scale computing and sensing, and c) architectural design techniques for nanoscale processors, with the goal of mapping a potential path toward achieving molecular-scale computing.</p><p>We make four primary contributions in this thesis. First, we develop and experimentally demonstrate a scalable, cost-effective DNA self-assembly-based fabrication technique for molecular circuits. Second, we propose and evaluate Resonance Energy Transfer (RET) logic, a novel nanoscale technology for computing based on single-molecule optical devices. Third, we design and experimentally demonstrate selective sensing of several biomolecules using RET-logic elements. Fourth, we explore the architectural implications of integrating computation and molecular sensors to form nanoscale sensor processors (nSP), nanoscale-sized systems that can sense, process, store and communicate molecular information. Through the use of self-assembly manufacturing, RET molecular logic, and novel architectural techniques, the smallest nSP design is about the size of the largest known virus.</p> / Dissertation
4

Composants optoélectroniques à base d'alliages SiGe riches en Ge pour le proche et moyen infrarouge / Optoelectronic components based on Ge-rich SiGe alloys for near and mid infrared

Vakarin, Vladyslav 11 December 2017 (has links)
Aujourd’hui les interconnections optiques ont devancé les interconnections électriques à longue, moyenne et courte distance dans le domaine des télécommunications. La photonique silicium a connu un tel développement que même les interconnections inter et intra puces deviennent progressivement à dominante optique. En revanche, la multiplication des terminaux d’accès et l’augmentation constante du volume de données échangées imposent l’apparition de nouveaux composants avec une consommation énergétique encore plus faible. Dans ce contexte, les composants optoélectroniques à faible consommation à base des puits quantiques Ge/SiGe ont été développés. Jusqu’à présent l’utilisation des puits quantiques Ge/SiGe était seulement limitée aux modulateurs à électro-absorption Les travaux menés durant la première partie de ma thèse consistaient à étudier un nouveau type de région active à base de puits quantiques Ge/SiGe couplés. Ces études ont abouti à la démonstration d’un effet d’électro-réfraction géant dans ces structures. La région active basée sur les puits couplés donne lieu à une variation de l’indice de réfraction de 2.3×10-3 sous une tension de 1.5 V seulement. L’utilisation d’un tel effet pour la réalisation de modulateurs optiques intégrés a ensuite nécessité le développement des briques de base passives afin d’obtenir une structure interférométrique. Des virages compacts et des interféromètres de Mach Zehnder sont conçus, fabriqués et caractérisés avec succès. La sensibilité de ces structures à la polarisation est évaluée par simulation numérique et les structures insensibles à la polarisation sont conçues. Un modulateur à électroréfraction intégré est ensuite conçu et fabriqué, nécessitant la mise en place d’un nouveau procédé technologique. Les résultats de caractérisation préliminaires sont présentés. Les perspectives de ce travail sont la réalisation d’un modulateur efficace ayant une tension de commande inférieure à 2V.Le champ d’application des circuits photoniques ne se limite pas au secteur des télécommunications. L’approche basée sur l’optique intégrée est aussi très prometteuse pour l’identification et analyse des espèces chimiques environnantes. La région spectrale de moyen infrarouge est particulièrement adaptée à cet effet car les raies d’absorption spécifiques de nombreuses espèces chimiques y sont présentes. L’utilisation des circuits optiques sur substrat silicium permet de développer des systèmes spectroscopiques performants, compacts et à bas cout. La seconde partie de ma thèse était dédiée au développement de la plateforme photonique large-bande basée sur les guides d’ondes Si1-xGex riches en Ge. Les guides d’onde large bande fonctionnant entre 5.5 et 8.6 µm ont été démontrés expérimentalement ce qui a permis de concevoir des structures plus complexes telles que les MMI et les interféromètres de Mach Zehnder ultra large bande. Le même dispositif possède une bande passante théorique de 3.5 µm en polarisation TE et d’une octave en polarisation TM. Le fonctionnement a été démontré expérimentalement entre 5.5 et 8.6 µm et est seulement limité par la plage de longueurs d’ondes adressable par le laser. Ce travail ouvre les perspectives pour la future démonstration des systèmes spectroscopiques ultra-large bande sur la plateforme Si1-xGex riche en Ge. Une dernière partie de ce travail a été consacrée à l’étude de la génération de la seconde harmonique dans les puits quantiques Ge/SiGe pour les systèmes spectroscopiques dans le moyen infrarouge. Les premières structures sont conçues et fabriquées. / Today optical interconnects have overpassed wires on long, mid and short distances on the telecommunication field. Silicon photonics have known such a development that even inter and intra chip communications progressively become optical. However, the multiplication of data access terminals and the constant increase of data consumption force new components with even lower power consumption to appear. In this context, low power consumption components based on Ge/SiGe quantum wells have been developed. Until now, the use of Ge/SiGe quantum wells has been only limited to electroabsorption modulators. The first part of my thesis was dedicated to the study of a new kind of active region based on coupled Ge/SiGe quantum wells. This work led to the demonstration of giant electrorefractive effect in these structures. The active region based on coupled quantum wells gives a refractive index variation of 2.3×10-3 under a bias of only 1.5 V. The use of this effect for the development of integrated optical modulators needed the development of main building blocks to obtain interferometric structures. Compact bends and Mach Zehnder interferometers have been designed, fabricated and successfully characterized. The sensitivity to the polarization of these structures was evaluated with numerical simulations and polarization insensitive structures were designed. Then, an integrated electrorefractive modulator has been designed and fabricated which needed the development of a new technological process. The first charaterization results are presented. The perspectives of this work are the realization of an efficient modulator with switching voltage lower than 2V. The field of application of photonic integrated circuits is not only limited to the telecommunications. The approach based on integrated optics is also very promising for the identification and analysis of surrounding chemical species. Mid infrared spectral region is particularly suitable for this purpose as it contains specific absorption fingerprints of different chemical species. The use of photonic integrated circuits on silicon substrate allows to develop performant, compact and low cost spectroscopic systems. The second part of my thesis was focused on the development of wideband photonic platform based on Ge-rich Si1-xGex waveguides. Wideband waveguides between 5.5 and 8.5 µm were experimentally demonstrated which made possible the developpement of more complex structures such as MMIs or ultra-wideband Mach Zehnder interferometers. The same device has a theoretical bandwidth of 3.5 µm in TE polarization and of one octave in TM polarization. The operation was experimentally demonstrated between 5.5 and 8.6 µm and is only limited by laser spectral range. This work paves the way for future development of ultra-wideband spectroscopic systems on Ge-rich Si1-xGex platform. The last part of this work concerned second harmonic generation in Ge/SiGe quantum wells for mid infrared spectroscopic systems. First test devices have been designed and fabricated
5

Integrating Optical Emitters into Silicon Photonic Waveguides

Milgram, Joel 04 1900 (has links)
<p>This thesis reports work targeting the integration of Si light emitters with optical waveguides. Such integrated devices would find utility in a number of applications including telecommunications, optical interconnects, and biological and chemical sensors. Much research has been directed by others on how to improve the emission efficiency and achieve lasing in VLSI (very large scale integration) compatible sources. Here, the focus is on how such devices can be integrated with planar waveguides. Two enhancement techniques were selected for potential integration; defect engineering (DE), and Si nanocrystals (Si-nc) embedded in Si02• Defect engineered light emitting diodes (LEDs) made on silicon-on-insulator (SOI) and emitting at 1.1 μm were successfully demonstrated. In addition, surface photoluminescence from SOI was analyzed to account for interference from the SOI cavity. However, it was determined that the emission efficiency of defect engineered LEDs studied during the course of this work is below that which was reported previously, and that the fabrication procedure thus suffers from irreproducibility. Barring an enormous advancement in the DE technique, it is concluded that the emission efficiency is too small to make use of its integration potential. </p><p>A more successful approach was obtained from the Si-nc system fabricated using electron-cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD). Optically pumped edge emitting devices were designed, fabricated and characterized. The devices are comprised of Si-ncs emitting at 800 nm, integrated with slab silicon nitride waveguides. This work is the first report of edge emission from Si-ncs integrated with silicon nitride waveguides. Edge emission and waveguide properties were characterized in the ~850 nm emission band of the Si-ncs. The edge emission was well described as a propagating mode, attenuated primarily by the Si-nc film. Propagation losses of a typical air/Si-nc/SiNx/Si02 waveguide were measured to be 11 ± 2 dB/cm and 20 ± 2 dB/cm at 850 nm in the TE and TM polarizations respectively. A wavelength dependent loss of -0.14 ± 0.03 dB/(cm*nm) was found to exist in the material loss of Si-nc films. In addition, the Si-nc films were found to undergo a partially recoverable photo-induced degradation of PL efficiency during exposure to pump light. Processing techniques compatible with both high efficiency Si-nc and low loss silicon nitride were developed and described. A two-sectioned photonic device was also designed, fabricated and characterized. The device contained an optically pumped Si-nc emitting waveguide section integrated with a low loss silicon nitride slab waveguide. The potential for optically pumped Si-nc emitters integrated with silicon nitride photonic circuits thus appears promising.</p> / Thesis / Doctor of Philosophy (PhD)
6

Nano-ingéniérie de bande interdite des semiconducteurs quantiques par recuit thermique rapide au laser

Stanowski, Radoslaw Wojciech January 2011 (has links)
The ability to fabricate semiconductor wafers with spatially selected regions of different bandgap material is required for the fabrication of monolithic photonic integrated circuits (PIC's). Although this subject has been studied for three decades and many semiconductor engineering approaches have been proposed, the problem of achieving reproducible results has constantly challenged scientists and engineers. This concerns not only the techniques relaying on multiple sequential epitaxial growth and selective area epitaxy, but also the conventional quantum well intermixing (QWI) technique that has been investigated as a post-growth approach for bandgap engineering. Among different QWI techniques, those based on the use of different lasers appear to be attractive in the context of high-precision and the potential for cost-effective bandgap engineering. For instance, a tightly focused beam of the infrared (IR) laser could be used for the annealing of small regions of a semiconductor wafer comprising different quantum well (QW) or quantum dot (QD) microstructures. The precision of such an approach in delivering wafers with well defined regions of different bandgap material will depend on the ability to control the laser-induced temperature, dynamics of the heating-cooling process and the ability to take advantage of the bandgap engineering diagnostics. In the frame of this thesis, I have investigated IR laser-induced QWI processes in QW wafers comprising GaAs/A1GaAs and InP/InGaAsP microstructures and in InAs QD microstructures grown on InP substrates. For that purpose, I have designed and set up a 2-laser system for selective area rapid thermal annealing (Laser-RTA) of semiconductor wafers. The advantage of such an approach is that it allows carrying out annealing with heating-cooling rates unattainable with conventional RTA techniques, while a tightly focused beam of one of the IR lasers is used for `spot annealing'. These features have enabled me to introduce a new method for iterative bandgap engineering at selected areas (IBESA) of semiconductor wafers. The method proves the ability to deliver both GaAs and InP based QW/QD wafers with regions of different bandgap energy controlled to better than « 1nm of the spectral emission wavelength. The IBESA technique could be used for tuning the optical characteristics of particular regions of a QW wafer prepared for the fabrication of a PIC. Also, this approach has the potential for tuning the emission wavelength of individual QDs in wafers designed, e.g., for the fabrication of single photon emitters. In the 1st Chapter of the thesis, I provide a short review of the literature on QWI techniques and I introduce the Laser - RTA method. The 2nd Chapter is devoted to the description of the fundamental processes related to the absorption of laser light in semiconductors. I also discuss the results of the finite element method applied for modeling and semi-quantitative description of the Laser - RTA process. Details of the experimental setup and developed procedures are provided in the 3rd Chapter. The results concerning direct bandgap engineering and iterative bandgap engineering are discussed in the 4th and 5th Chapters, respectively.
7

Design, fabrication and characterization of a hybrid III-V on silicon transmitter for high-speed communications / Design, fabrication and characterization of a hybrid III-V on silicon transmitter for high-speed communications.

Ferrotti, Thomas 16 December 2016 (has links)
Depuis plusieurs années, le volume de données échangé à travers le monde augmente sans cesse. Pour gérer cette large quantité d’information, des débits élevés de transmission de données sur de longues distances sont essentiels. Puisque les interconnections à base de cuivre ne peuvent pas suivre cette tendance, des systèmes de transmission optique rapides sont requis dans les centre de données. Dans ce contexte, la photonique sur silicium est considérée comme une solution pour obtenir des circuits photoniques intégrés à un coût réduit. Bien que cette technologie ait connu une croissance significative au cours de la dernière décennie, les transmetteurs actuels à haut débit de transmission sont principalement basés sur des sources laser externes. Par conséquent, l’objectif de ce travail de thèse était de concevoir et produire un transmetteur à haut débit de transmission de données pour la photonique sur silicium, doté d’une source laser intégrée.Ce transmetteur se compose d’un modulateur silicium de type Mach-Zehnder, co-intégré sur la même plaque avec un laser hybride III-V sur silicium à réseaux de Bragg distribués, dont la longueur d’onde d’émission peut être contrôlée électriquement autour de 1.3μm. La conception des différents éléments constituant à la fois le laser (coupleurs adiabatique entre le III-V et le silicium, miroirs de Bragg) et le modulateur (jonctions p-n, électrodes à ondes progressives) est détaillée, de même que leur fabrication. Pendant la caractérisation des transmetteurs, des taux de transmission de données jusqu’à 25Gb/s, pour des distances allant jusqu’à 10km ont été démontrés avec succès, avec la possibilité de contrôler la longueur d’onde jusqu’à 8.5nm. Par ailleurs, afin d’améliorer l’intégration de la source laser avec le circuit photonique sur silicium, une solution basée sur le dépôt à basse température (en-dessous de 400°C) d’une couche de silicium amorphe pendant la fabrication est aussi évaluée. Des tests sur une cavité laser à contre-réaction distribuée ont montré des performances au niveau de l’état de l’art (avec des puissances de sortie supérieures à 30mW), prouvant ainsi la viabilité de cette approche. / For several years, the volume of digital data exchanged across the world has increased relentlessly. To manage this large amount of information, high data transmission rates over long distances are essential. Since copper-based interconnections cannot follow this tendency, high-speed optical transmission systems are required in the data centers. In this context, silicon photonics is seen as a way to obtain fully integrated photonic circuits at an expected low cost. While this technology has experienced significant growth in the last decade, the high-speed transmitters demonstrated up to now are mostly based on external laser sources. Thus, the aim of this PhD thesis was to design and produce a high-speed silicon photonic transmitter with an integrated laser source.This transmitter is composed of a high-speed silicon Mach-Zehnder, co-integrated on the same wafer with a hybrid III-V on silicon distributed Bragg reflector laser, which emission wavelength can be electrically tuned in the 1.3μm wavelength region. The design of the various elements constituting both the laser (III-V to silicon adiabatic couplers, Bragg reflectors) and the modulator (p-n junctions, travelling-wave electrodes) is thoroughly detailed, as well as their fabrication. During the characterization of the transmitters, high-speed data transmission rates up to 25Gb/s, for distances up to 10km are successfully demonstrated, with the possibility to tune the operating wavelength up to 8.5nm. Additionally, in order to further improve the integration of the laser source with the silicon photonic circuit, a solution based on the low-temperature (below 400°C) deposition of an amorphous silicon layer during the fabrication process is also evaluated. Tests on a distributed feed-back laser structure have shown performances at the state-of-the-art level (with output powers above 30mW), thus establishing the viability of this approach.
8

Femtosecond-laser Written Integrated Optical Devices for Quantum Circuits / Femtosekund-laserskrivna integrerade optiska enheter för kvantkretsar

Chen, Ang January 2022 (has links)
Integrated quantum photonic circuits have gained increasing interest in the field of quantum information, due to their compactness, the intrinsic stability and the potential scalability. Photons are the promising candidate for quantum information processing. Among all the optical platforms, femtosecond-laser waveguide writing technique has shown the extraordinary versatility in producing different components of a complete quantum system. In the last decade, femtosecond-laser writing has greatly expanded its applications in quantum technology. The aim of this thesis is to study and optimize the fundamental optical devices for integrated quantum circuits using femtosecond-laser waveguide writing technique. We investigate relevant theory of optical waveguides, the methods to fabricate and characterize laser-written waveguides in glass. In this work, we demonstrate the femtosecond-laser writing of integrated devices including Mach-Zehnder interferometer and path-encoded CNOT quantum gate. These devices can further serve as building blocks to produce complete integrated quantum system. / Integrerade kvantfotoniska kretsar har fått ett ökande intresse inom området kvantinformation, på grund av deras kompakthet, den inneboende stabiliteten och den potentiella skalbarheten. Fotoner är den lovande kandidaten för bearbetning av kvantinformation. Bland alla optiska plattformar har femtosekund-laservågledarskrivteknik visat den extraordinära mångsidigheten i att producera olika komponenter i ett komplett kvantsystem. Under det senaste decenniet har femtosekundlaserskrivning kraftigt utökat sina tillämpningar inom kvantteknologi. Syftet med denna avhandling är att studera och optimera de grundläggande optiska enheterna för integrerade kvantkretsar med hjälp av femtosekund-laservågledarskrivteknik. Vi undersöker relevant teori om optiska vågledare, metoderna för att tillverka och karakterisera laserskrivna vågledare i glas. I detta arbete demonstrerar vi femtosekundlaserskrivning av integrerade enheter inklusive Mach-Zehnder-interferometer och vägkodad CNOT-kvantgrind. Dessa enheter kan vidare fungera som byggstenar för att producera kompletta integrerade kvantsystem.
9

Réalisation de sources laser III-V sur silicium

Dupont, Tiphaine 19 January 2011 (has links)
Le substrat SOI (Silicon-On-Insulator) constitue aujourd’hui le support de choix pour la fabrication de fonctions optiques compactes. Cette plateforme commune avec la micro-électronique favorise l’intégration de circuits photoniques avec des circuits CMOS. Néanmoins, si le silicium peut être utilisé de manière très avantageuse pour la fabrication de composants optiques passifs, il présente l’inconvénient d’être un très mauvais émetteur de lumière. Ceci constitue un obstacle majeur au développement de sources d’émission laser, briques de constructions indispensables à la fabrication d’un circuit photonique. La solution exploitée dans le cadre de cette thèse consiste à reporter sur SOI des épitaxies laser III-V par collage direct SiO2-SiO2. L’objectif est de réaliser sur SOI des sources lasers à cavité horizontale permettant d’injecter au moins 1mW de puissance dans un guide d’onde silicium inclus dans le SOI. Notre démarche est de transférer un maximum des fonctions du laser vers le silicium, dont les procédés sont familiers au monde de la micro-électronique. Dans l’idéal, le III-V ne devrait être utilisé que comme matériau à gain ; la cavité laser pouvant être fabriquée dans le silicium. Mais cette ligne de conduite n’est pas forcément aisée à mettre en œuvre. En effet, les photons sont produits dans le III-V mais doivent être injectés dans un guide silicium placé sous l’épitaxie. La difficulté est que les deux matériaux sont séparés par plus d’une centaine de nanomètres d’oxyde de collage faisant obstacle au transfert de photons. Le développement de lasers III-V couplés à un guide d’onde SOI demande alors de nouvelles conceptions du système laser dans son ensemble. Notre travail a donc consisté à concevoir un laser hybride III-IV / silicium se pliant aux contraintes technologiques du collage. En s’appuyant sur la théorie des modes couplés et les concepts des cristaux photoniques, nous avons imaginé, réalisé, puis caractérisé un laser à contre-réaction distribuée hybride (en anglais : « distributed feedback laser », laser DFB). Son fonctionnement optique original, permet à la fois un maximum de gain et d’efficacité de couplage grâce à une circulation en boucle des photons du guide III-V au guide SOI. Sur ces dispositifs, nous montrons une émission laser monomode (SMSR de 35 dB) à température ambiante en pompage optique et électrique pulsé. Comme attendu, la longueur d’onde d’émission est dépendante du pas de réseau DFB. Les lasers fonctionnent avec une épaisseur de collage de silice de 200 nm, ce qui offre une grande souplesse quant au procédé d’intégration. Tous les lasers fonctionnent jusqu’à des longueurs de 150 μm (la plus petite longueur prévue sur le masque). Malgré les faibles niveaux de puissances récoltés dans la fibre lors des caractérisations, la prise en compte des pertes optiques induites pas les coupleurs fibres nous indique que la puissance réellement injectée dans le guide silicium dépasse le milliwatt. Notre objectif de ce point de vue est donc rempli. Malheureusement le fonctionnement des lasers en injection électrique continue n’a pas pu être obtenu dans les délais impartis. Cependant, les faibles densités de courant de seuil mesurées en injection pulsée (300A / cm2 à température ambiante sur les lasers de 550 μm de long) laissent présager un fonctionnement prochain en courant continu. / Silicon-On-Insulator (SOI) is today the utmost platform for the fabrication of compact optical functions. This common platform with microelectronics favors the integration of photonic circuits with CMOS circuits. Nevertheless, if silicon allows for the fabrication of compact passive photonic functions, its poor light emission properties constitute a major obstacle to the development of an integrated laser source. The solution used within the framework of this thesis consists in integrating III-IV laser stacks on 200 mm SOI wafers by the mean of SiO2-SiO2 direct bonding. The aim of this work is to demonstrate a III-V on SOI laser that couples at least 1mW to a silicon waveguide. Our approach is to transfer a maximum of the laser complexity to the silicon, which processes are familiar to microelectronics. Ideally, III-V should be just used as a gain material ; the laser cavity being made out of silicon. However, this approach is not so easy to put into practice. Indeed, photons are generated by the III-V waveguide but have to be transferred into the silicon waveguide located under the stack. The difficulty is that both waveguides are separated by a low index bonding layer, which thickness ranges from one hundred to several hundreds of nanometres. The development of a III-V on SOI laser then requires a new thinking of the whole laser system. Therefore, our work has consisted in designing a III-V on silicon hybrid laser that takes into consideration the specific constraints of the integration technology. Based on the coupled mode theory and on the photonic crystals concepts, we have designed, fabricated and characterized an hybrid Distributed Feedback Laser (DFB). Its original work principle allows for both a high amount of gain and coupling efficiency, thanks to a continuous circulation of photons from the III-V to the SOI waveguide. On these devices, we show a monomode laser emission at room temperature (with a side mode suppression ratio of 35dB) under pulsed optical and electrical pumping. As expected, the lasing wavelength is function of the DFB grating pitch. The lasers work with a bonding layer as thick as 200nm, that greatly relaxes the constraints of the bonding technology. Lasers work down to a minimum length of 150 μm, which is the shortest laser lenght of the mask. Despite the low power levels collected by the fibre during the characterizations, accounting for the high optical losses due to the fiber couplers, the optical power effectively injected to the silicon waveguide should be in the miliwatt range. Unfortunately, the low threshold current densities measured under pulsed operation (300 A / cm2 at room temperature) suggest that the continuous-wave regime should be reached in a very near future.

Page generated in 0.076 seconds