1 |
Silicon nanocavity light emitters at 1.3-1.5 µm wavelengthShakoor, Abdul January 2013 (has links)
Silicon Photonics has been a major success story in the last decade, with many photonic devices having been successfully demonstrated. The only missing component is the light source, however, as making an efficient light source in silicon is challenging due to the material's indirect bandgap. The development of a silicon light source would enable us to make an all-silicon chip, which would find many practical applications. The most notable among these applications are on-chip communications and sensing applications. In this PhD project, I have worked on enhancing silicon light emission by combining material processing and device engineering methods. Regarding materials processing, the emission level was increased by taking three routes. In all the three cases the emission was further enhanced by coupling it with a photonic crystal (PhC) cavity via Purcell effect. The three different approaches taken in this PhD project are listed below. 1. The first approach involves incorporation of optically active defects into the silicon lattice by hydrogen plasma treatment or ion implantation. This process results in broad luminescence bands centered at 1300 and 1500 nm. By coupling these emission bands with the photonic crystal cavity, I was able to demonstrate a narrowband silicon light emitting diode at room temperature. This silicon nano light emitting diode has a tunable emission line in the 1300-1600 nm range. 2. In the second approach, a narrow emission line at 1.28µm was created by carbon ion implantation, termed “G-line” emission. The possibility of enhancing the emission intensity of this line via the Purcell effect was investigated, but only with limited success. Different proposals for future work are presented in this regard. 3. The third approach is deposition of a thin film of an erbium disilicate on top of a PhC cavity. The erbium emission is enhanced by the PhC cavity. Using this method, an optically pumped light source emitting at 1.54 µm and operating at room temperature is demonstrated. A practical application of silicon light source developed in this project in gas sensing is also demonstrated. As a first step, I show refractive index sensing, which is a simple application for our source and demonstrates its capabilities, especially relating to the lack of fiber coupling schemes. I also discuss several proposals for extending applications into on-chip biological sensing.
|
2 |
Compact Energy Efficient 1-D Photonic Crystal Cavity Electro-Optical SwitchShen, Jianhao 20 December 2022 (has links)
No description available.
|
3 |
Electrically injected photonic-crystal nanocavitiesWelna, Karl P. January 2011 (has links)
Nano-emitters are the new generation of laser devices. A photonic-crystal cavity, which highly confines light in small volumes, in combination with quantum-dots can enhance the efficiency and lower the threshold of this device. The practical realisation of a reliable, electrically pumped photonic-crystal laser at room-temperature is, however, challenging. In this project, a design for such a laser was established. Its properties are split up into electrical, optical and thermal tasks that are individually investigated via various device simulations. The resulting device performance showed that with our design the quantum-dots can be pumped in order to provide gain and to overcome the loss of the system. Threshold currents can be as low as 10’s of μA and Q-factors in the range of 1000’s. Gallium arsenide wafers were grown according to our specifications and their diode behaviour confirmed. Photonic-crystal cavities were fabricated through a newly developed process based on a TiOₓ hard-mask. Beside membraned cavities, also cavities on oxidised AlGaAs were fabricated with help to a unique hard-mask removal method. The cavities were measured with a self-made micro-photoluminescence setup with the highest Q-factor of 4000 for the membrane cavity and a remarkable 2200 for the oxide cavity. The fabrication steps, regarding the electrically pumped photonic-crystal laser, were developed and it was shown that this device can be fabricated. During this project, a novel type of gentle confinement cavity was developed, based on the adaption of the dispersion curve (DA cavity) of a photonic-crystal waveguide. Q-factors of as high as 600.000 were measured for these cavities made in Silicon.
|
4 |
Hybrid nanophotonic elements and sensing devices based on photonic crystal structuresBarth, Michael 12 July 2010 (has links)
Die vorliegende Forschungsarbeit widmet sich der Entwicklung und Untersuchung neuartiger photonischer Kristallstrukuren für Anwendungen in den Gebieten der Nanophotonik und Optofluidik. Dabei konzentriert sich eine erste Serie von Experimenten auf die Charakterisierung und Optimierung photonischer Kristallresonatoren im sichtbaren Spektralbereich, wobei bisher unerreichte Resonatorgüten von bis zu 3400 gezeigt werden können. Diese Strukturen werden anschließend als Plattformen zur Herstellung von hybriden nanophotonischen Bauelementen verwendet, indem externe Partikel (wie z.B. Diamant-Nanokristalle und Metall-Nanopartikel) in kontrollierter Art und Weise an die Resonatoren gekoppelt werden. Zu diesem Zweck wird eine Nanomanipulationsmethode entwickelt, welche Rastersonden zur gezielten Positionierung und Anordnung von Partikeln auf den photonischen Kristallstrukturen benutzt. Verschiedene Arten solcher Hybridelemente werden realisiert und untersucht, einschließlich diamant-gekoppelter Resonatoren, plasmon-gekoppelter Resonatoren und Metall-Diamant Hybridstrukturen. Außer für Anwendungen auf dem Gebiet der Nanophotonik werden verschiedene photonische Kristallstrukturen auch hinsichtlich ihres Leistungsvermögens als biochemische Sensorelemente erforscht. Zum ersten Mal wird eine umfassende numerische Analyse der optischen Kräfte auf Objekte im Nahfeld photonischer Kristallresonatoren durchgeführt, welche neue Möglichkeiten zum Einfang sowie zur Detektion und Untersuchung biologischer Partikel in integrierten optofluidischen Bauteilen bieten. Weiterhin werden unterschiedliche photonische Kristallfasern bezüglich ihrer Detektionssensitivität in Absorptions- und Fluoreszenzmessungen untersucht, wobei sich eine klare Überlegenheit von selektiv befüllten Hohlkern-Designs im Vergleich zu Festkern-Fasern offenbart. / This thesis deals with the development and investigation of novel photonic crystal structures for applications in nanophotonics and optofluidics. Thereby, a first series of experiments focuses on the characterization and optimization of photonic crystal cavities in the visible wavelength range, demonstrating unprecedented cavity quality factors of up to 3400. These structures are subsequently employed as platforms for the creation of advanced hybrid nanophotonic elements by coupling external particles (such as diamond nanocrystals and metal nanoparticles) to the cavities in a well-controlled manner. For this purpose, a nanomanipulation method is developed, utilizing scanning probes for the deterministic positioning and assembly of particles on the photonic crystal structures. Various types of such hybrid elements are realized and investigated, including diamond-coupled cavities, plasmon-coupled cavities, and metal-diamond hybrid structures. Apart from applications in nanophotonics, different types of photonic crystal structures are also studied with regard to their performance as biochemical sensing elements. For the first time a thorough numerical analysis of the optical forces exerted on objects in the near-field of photonic crystal cavities is conducted, providing novel means to trap, detect, and investigate biological particles in integrated optofluidic devices. Furthermore, various types of photonic crystal fibers are studied with regard to their detection sensitivity in absorption and fluorescence measurements, revealing a clear superiority of selectively infiltrated hollow-core designs in comparison to solid-core fibers.
|
Page generated in 0.0962 seconds