• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 23
  • 20
  • 15
  • 12
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 262
  • 262
  • 59
  • 43
  • 34
  • 31
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Effets d’optique non-linéaire d’ordre trois dans les cavités à cristaux photoniques en silicium : auto-oscillations GHz dues aux porteurs libres et diffusion Raman stimulée / Nonlinear optical effects of the third order in silicon photonic crystal cavities : High frequency self-induced oscillations and stimulated Raman scattering

Cazier, Nicolas 13 December 2013 (has links)
Dans ce travail de thèse, nous avons étudié des effets d'optique non-linéaire d'ordre trois dans les cavités à cristaux photoniques en silicium. Le premier d'entre eux est un phénomène d'auto-oscillations à haute fréquence (GHz) dans ces cavités, qui a pour origine une modulation de la transmission de la cavité due à l'interaction entre la dispersion due aux porteurs libres et l’absorption à deux photons. Nous avons observé ces auto-oscillations, pour la première fois, dans les nanocavités à cristaux photoniques silicium avec une fréquence de l’ordre de 3 GHz et une grande pureté spectrale. Nous avons développé un modèle pour analyser les mécanismes qui régissent l'apparition de ces auto-oscillations, ainsi que les amplitudes des fréquences fondamentale et harmoniques de ces oscillations. Ce phénomène d'auto-oscillations permettrait de réaliser des sources micro-ondes en silicium très compactes. Le deuxième phénomène étudié est celui de la diffusion Raman, qui est le seul moyen d'obtenir des lasers entièrement en silicium démontré jusqu'à présent. Cette diffusion Raman a été mesurée tout d'abord dans des guides d'onde à cristaux photoniques étroits (W0.63) de longueur 100 microns, où nous avons pu obtenir un nombre de photons Stokes allant jusqu'à 9, montrant ainsi que la diffusion Raman stimulée prédominait dans ces guides d'onde, bien que nous n’ayons pas pu y obtenir un effet laser Raman franc. Nous avons ensuite mesuré la diffusion Raman dans des nanocavités doublement résonantes conçues spécifiquement à partir de ces guides d'ondes pour optimiser l'effet Raman, avec des facteurs de qualités allant jusqu'à 235000 pour la résonance Stokes. Bien que nous n'ayons pu mesurer que de la diffusion Raman spontanée dans ces cavités, avec un facteur de Purcell de 2.9, l'étude théorique que nous avons effectuée sur les lasers Raman, et qui s'accorde parfaitement avec les résultats expérimentaux, montre qu’il serait possible d'obtenir un laser Raman dans ces cavités avec un seuil en dessous du milliwatt à condition de diminuer ces pertes dues à l'absorption par porteurs libres. Ceci pourrait être accompli en diminuant le temps de vie des porteurs libres, par exemple en les retirant du silicium à l’aide d’une jonction MSM. / In this thesis, we studied third order nonlinear optical effects in photonic crystal cavities. The first of those effects is is the phenomenon of high frequency (GHz) self-pulsing in these cavities, which originates from a modulation of the transmission of the cavity due to the interaction between the free-carrier dispersion and the two-photon absorption. We have observed these self-induced oscillations for the first time in silicon photonic crystal nanocavities, with a frequency of about 3 GHz and a high spectral purity. We have developed a model to analyze the mechanisms that govern the onset of these oscillations, as well as the amplitudes of the fundamental and harmonic frequencies of these oscillations. This self-pulsing phenomenon would allow us to realize realize ultra-compact microwave sources made of silicon. The second phenomenon studied is that of Raman scattering, which is the only way to obtain lasers fully in silicon demonstrated so far. The Raman scattering was measured first in narrow photonic crystals waveguides (W0.63) of length 100 microns, where we could obtain a number of Stokes photons up to 9, showing that the stimulated Raman scattering predominated in these waveguides, although we have not been able to obtain a true Raman laser effect in them. We then measured the Raman scattering in doubly resonant nanocavities specifically designed from these waveguides to optimize the Raman effect, with quality factors up to 235000 for the Stokes resonance. Although we could only measure spontaneous Raman scattering in these cavities, with a Purcell factor of 2.9, the theoretical study that we conducted on the Raman lasers, which agrees perfectly with the experimental results, shows that it would be possible to obtain a Raman laser in these cavities with a threshold below the milliwatt, provided we reduce the losses due to the free-carrier absorption. This could be accomplished by decreasing the free-carrier lifetime, for example by removing the free carriers from the silicon using a MSM junction.
222

Cristaux photoniques à gradient : dispositifs et applications / Graded Photonic Crystals : devices and applications

Gaufillet, Fabian 12 November 2014 (has links)
Les matériaux artificiellement structurés que sont les cristaux photoniques sont couramment utilisés pour leurs propriétés dispersives. Leur constante diélectrique varie périodiquement à l'échelle de la longueur d'onde selon deux ou trois directions avec un contraste d'indice suffisamment élevé. La relation de dispersion ω = ω(k) qui résulte de cette variation périodique a la forme d'une structure de bande à l'intérieur de laquelle il existe des bandes interdites photoniques où la propagation du champ électromagnétique est interdite. En dehors de ces bandes, i.e. dans les bandes photoniques, se trouvent les propriétés de dispersion des cristaux photoniques.Le but de ce travail de thèse est de concevoir, de fabriquer et de caractériser des dispositifs à cristal photonique à gradient. Ces dispositifs ont été conçus de façon à s'appliquer dans les domaines allant des micro-ondes à l'optique. Nous avons conçu des dispositifs à partir de cristaux photoniques dont les propriétés dispersives les rendent analogues à des milieux linéaires, homogènes et isotropes (LHI). À la maille élémentaire de ces cristaux photoniques LHI, nous avons appliqué un gradient pour réaliser des lentilles à gradient 1D. Des résultats importants concernant la conception, la fabrication et la caractérisation expérimentale d'une lentille plate à gradient d'indice fonctionnant dans la bande X des micro-ondes sont reportés. Celle lentille focalise une onde plane incidente et collimate l'onde émise par une source ponctuelle situés dans son plan focal. Si cette lentille constitue en soi un démonstrateur et valide la démarche mise en œuvre pour la concevoir, ses applications potentielles concernent particulièrement les antennes. Nous réalisons également plusieurs lentilles à gradient 2D dont des lentilles de Lüneburg et Half Maxwell Fisheye; leurs applications aux antennes sont importantes. Nous nous intéressons aussi à la réalisation de lentilles optiques à gradient d'indice dites « SELFOC® ». Dans le but de confirmer les propriétés dispersives remarquables qui ont été mises en évidence, nous avons poursuivi dans ce sens en revisitant une expérience classique qui met en évidence l'existence des ondes évanescentes : celle du « double prisme à angle droit ». Nous mettons également en évidence le phénomène de « réflexion totale frustrée » ainsi que le décalage, découvert par Goos et Hänchen, que subit l'onde réfléchie sur le dioptre. Ce sont ces deux points — réflexion totale frustrée et effet Goos-Hänchen — que nous vérifions dans le cas de cristaux photoniques LHI. / Artificially structured materials that are photonic crystals are commonly used for their dispersive properties. Their dielectric constant varies periodically across the wavelength in two or three directions with a sufficiently high index contrast. The resulting dispersion relation ω = ω(k) of the periodic variation has the form of a band structure within which there are photonic bandgaps in which the propagation of the electromagnetic field is prohibited. Outside of these bands, i.e. in the photonic band, there are the dispersion properties of the photonic crystals.The aim of this thesis is to design, fabricate and characterize graded photonic crystal devices. These devices were designed to be applied in areas ranging from microwaves to optics. We designed devices from photonic crystals with dispersive properties which make them similar to linear, homogeneous and isotropic media (LHI). In the unit cell of the LHI photonic crystal, we applied a gradient to achieve 1D graded lenses. Important results regarding the design, manufacturing and experimental characterization of a flat lens GRIN operating in X-band microwaves are deferred. This lens focuses an incident plane wave and collimates the wave emitted by a point source located in its focal plane. If this lens is itself a demonstrator and validates the approach implemented for the design, its potential applications particularly concern antennas. We also carry several 2D graded lenses including Lüneburg and Half Maxwell Fisheye lenses; their applications to the antennas are important. We are also interested in making optical graded index lenses called "SELFOC®".In order to confirm the remarkable dispersive properties that have been identified, we continued in that direction by revisiting a classic experiment that highlights the existence of evanescent waves: the "double right angle prism". We also highlight the phenomenon of "frustrated total internal reflection" and the shift discovered by Goos and Hänchen suffered by the reflected wave on the interface. It's these two points – frustrated total internal reflection and Goos-Hänchen effect - that we check in the case of LHI photonic crystals.
223

La Méthode des Équations Intégrales pour des Analyses de Sensitivité.

Zribi, Habib 21 December 2005 (has links) (PDF)
Dans cette thèse, nous menons à l'aide de la méthode des équations intégrales des analyses de sensitivité de solutions ou de spectres de l'équation de conductivité par rapport aux variations géométriques ou de paramètres de l'équation. En particulier, nous considérons le problème de conductivité dans des milieux à forts contrastes, le problème de perturbation du bord d'une inclusion de conductivité, le problème de valeurs propres du Laplacien dans des domaines perturbés et le problème d'ouverture de gap dans le spectre des cristaux photoniques.
224

Technology and properties of InP-based photonic crystal structures and devices

Shahid, Naeem January 2012 (has links)
Photonic crystals (PhCs) are periodic dielectric structures that exhibit a photonic band gap; a range of wavelengths for which light propagation is forbidden. 2D PhCs exhibit most of the properties as their three dimension counterparts with a compatibility with standard semiconductor processing techniques such as epitaxial growth, electron beam lithography, Plasma deposition/etching and electromechanical lapping/polishing. Indium Phosphide (InP) is the material of choice for photonic devices especially when it comes to realization of coherent light source at 1.55 μm wavelength. Precise engineering of the nanostructures in the PhC lattice offers novel ways to confine, guide and control light in phonic integrated circuits (PICs). Strong confinement of light in PhCs offer novel opportunities in many areas of physics and engineering. Dry etching, a necessary process step in PhC device manufacturing, is known to introduce damage in the etched material. Process induced damage and its impact on the electrical and optical properties of PhCs depends on the etched material, the etching technique and process parameters. We have demonstrated a novel post-etch process based on so-called mass-transport (MT) technology for the first time on InP-based PhCs that has significantly improved side-wall verticality of etched PhC holes. A statistical analysis performed on several devices fabricated by MT process technology shows a great deal of improvement in the reliability of optical transmission characteristics which is very promising for achieving high optical quality in PhC components. Several PhC devices were manufactured using MT technology. Broad enough PhC waveguides that operate in the mono/multi-mode regime are interesting for coarse wavelength de-multiplexing. The fundamental mode and higher order mode interaction creates mini-stop band (MSB) in the dispersion diagram where the higher order mode has a lower group velocity which can be considered as slow light regime. In this thesis work, the phenomena of MSBs and its impact on transmission properties have been evaluated. We have proposed and demonstrated a method that enables spectral tuning with sub-nanometer accuracy which is based on the transmission MSB. Along the same lines most of the thesis work relates to broad enough PhC guides that operated in the multimode regime. Temperature tuning experiments on these waveguides reveals a clear red-shift with a gradient of dλ/dT=0.1 nm/˚C. MSBs in these waveguides have been studied by varying the width in incremental amounts. Analogous to semiconductors heterostructures, photonic heterostructures are composed of two photonic crystals with different band-gaps obtained either by changing the air-fill factor or by the lattice constant. Juxtaposing two PhC and the use of heterostructures in waveguide geometry has been experimentally investigated in this thesis work. In particular, in multimode line defect waveguides the “internal” MSB effect brings a new dimension in single junction-type photonic crystal waveguide (JPCW) and heterostructure W3 (HW3) for fundamental physics and applications. We have also fabricated an ultra-compact polarization beam splitter (PBS) realized by combining a multimode waveguide with internal PhC. MSBs in heterostructure waveguides have shown interesting applications such as designable band-pass flat-top filters, and resonance-like filters with high transmission. In the course of this work, InGaAsP suspended membrane technology was developed. An H2 cavity with a linewidth of ~0.4 nm, corresponding to a Q value of ~3675 has been shown. InGaAsP PhC membrane is an ideal platform to study coupled quantum well/dot-nanocavity system. / <p>QC 20120831</p>
225

Templating and self-assembly of biomimetic materials

Mille, Christian January 2012 (has links)
This thesis focuses on the use of biomolecular assemblies for creating materials with novel properties. Several aspects of biomimetic materials have been investigated, from fundamental studies on membrane shaping molecules to the integration of biomolecules with inorganic materials. Triply periodic minimal surfaces (TPMS) are mathematically defined surfaces that partition space and present a large surface area in a confined space. These surfaces have analogues in many physical systems. The endoplasmic reticulum (ER) can form intricate structures and it acts as a replica for the wing scales of the butterfly C. rubi, which is characterized by electron microscopy and reflectometry. It was shown to contain a photonic crystal and an analogue to a TPMS. These photonic crystals have been replicated in silica and titania, leading to blue scales with replication on the nanometer scale. Replicas analyzed with left and right handed polarized light are shown be optically active. A macroporous hollow core particle was synthesized using a double templating method where a swollen block copolymer was utilized to create polyhedral nanofoam. Emulsified oil was used as a secondary template which gave hollow spheres with thin porous walls. The resulting material had a high porosity and low thermal conductivity. The areas of inorganic materials and functional biomolecules were combined to create a functional nanoporous endoskeleton. The membrane protein ATP synthase were incorporated in liposomes which were deposited on nanoporous silica spheres creating a tight and functional membrane. Using confocal microscopy, it was possible to follow the transport of Na+ through the membrane. Yop1p is a membrane protein responsible for shaping the ER. The protein was purified and reconstituted into liposomes of three different sizes. The vesicles in the 10-20 nm size range resulted in tubular structures. Thus, it was shown that Yop1p acts as a stabilizer of high curvature structures. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted. Paper 4: Submitted. Paper 5: Submitted.</p>
226

Unraveling photonic bands: characterization of self-collimation effects in two-dimensional photonic crystals

Yamashita, Tsuyoshi 15 June 2005 (has links)
Photonic crystals, periodic dielectric structures that control photons in a similar way that atomic crystals control electrons, present opportunities for the unprecedented control of light. Photonic crystals display a wide gamut of properties, such as the photonic band gap, negative index of refraction, slow or stationary modes, and anomalous refraction and propagation effects. This thesis investigates the modeling, simulation, fabrication, and measurement of two-dimensional square lattice photonic crystals. An effective index model was developed to describe the propagation of electromagnetic waves in the media and applied to characterize the behavior of self-collimated beams to discern the effect of the photonic crystal on the evolution of the amplitude and phase of the propagating beam. Potential applications include optical interconnects and stand alone devices such as filters and lasers. Based on design parameters from the simulations, two dimensional photonic crystals were fabricated on amorphous and single crystal silicon-on-insulator substrates utilizing electron beam lithography and inductively coupled plasma etching. A unique etching process utilizing a combination of Cl2 and C4F6 gases was developed and characterized which displayed a vertical profile with a sidewall angle of under 1 degree from vertical and very smooth sidewalls for features as small as 150 nm. The high quality of the etching was the key to obtaining extremely low loss, low noise structures, making feasible the fabrication of large area photonic crystal devices that are necessary to measure propagation phenomena. Reflectivity measurements were used to directly observe the photonic band structure with excellent correlation with theory. A device was designed and fabricated which successfully verified the prediction of the simulations through measurements of the self-collimation effect across a broad range of infrared wavelengths. A solid foundation for the necessary components (simulation, modeling, design, fabrication, and measurement) of two-dimensional photonic crystal has been demonstrated. Elements from solid state physics, materials science, optics, and electromagnetics were incorporated to further the understanding of the mechanism of beam propagation in photonic crystals and illuminating the vast potential of research in periodic media.
227

Photonic crystals: Analysis, design and biochemical sensing applications

Kurt, Hamza 06 July 2006 (has links)
The absence of appropriate media to cultivate photons efficiently at the micro or nano scale has hindered taking the full advantage of processing information with light. The proposal of such a medium for light, known as photonic crystals (PCs)--multi-dimensional artificially periodic dielectric media--brings the possibility of a revolution in communications and sensing much closer. In such media, one can manipulate light at a scale on the order of the wavelength or even shorter. Applications of PCs other than in communication include bio-sensing because of the peculiar properties of PCs such as the capability of enhance field-matter interaction and control over the group velocity. As a result, PC waveguide (PCW) structures are of interest and it is expected that PC sensors offer the feasibility of multi-analyte and compact sensing schemes as well as the ability of the detection of small absolute analyte quantities (nanoliters) and low-concentration samples (picomoles), which may be advantages over conventional approaches such as fiber optic and slab waveguide sensors. Depending on the nature of the analyte, either dispersive or absorptive sensing schemes may be implemented. Light propagation is controlled fully only with 3D PCs. One of the problems arising due to reducing the dimension to 2D is that PCs become strongly polarization sensitive. In many cases, one wants to implement polarization insensitive devices such that the PC provides a full band gap for all polarizations. To address this problem, a novel type of PC called annular PC is proposed and analyzed. The capability of tuning the TE and TM polarizations independently within the same structure provides great flexibility to produce polarization-independent or polarization-dependent devices as desired. PCW bends are expected to be the essential building blocks of photonic integrated circuits. Sharp corners having small radii of curvature can be obtained. To enhance the low-loss and narrow-band transmission through these bends, PC heterostructures waveguide concept is introduced. We show that in PCWs formed by joining different types of PCs in a single structure, light can flow around extremely sharp bends in ways that are not possible using conventional PCWs based on a single type of PC.
228

Phononic band gap micro/nano-mechanical structures for wireless communications and sensing applications

Mohammadi, Saeed 18 May 2010 (has links)
Because of their outstanding characteristics, micro/nano-mechanical (MM) structures have found a plethora of applications in wireless communications and sensing. Many of these MM structures utilize mechanical vibrations (or phonons) at megahertz or gigahertz frequencies for their operation. On the other hand, the periodic atomic structure of crystals is the fundamental phenomenon behind the new era of electronics technology. Such atomic arrangements lead to a periodic electric potential that modifies the propagation of electrons in the crystals. In some crystals, e.g. silicon (Si), this modification leads to an electronic band gap (EBG), which is a range of energies electrons can not propagate with. Discovering EBGs has made a revolution in the electronics and through that, other fields of technology and the society. Inspired by these trends of science and technology, I have designed and developed integrated MM periodic structures that support large phononic band gaps (PnBGs), which are ranges of frequencies that phonons (and elastic waves) are not allowed to propagate. Although PnBGs may be found in natural crystals due to their periodic atomic structures, such PnBGs occur at extra high frequencies (i.e., terahertz range) and cannot be easily engineered with the current state of technology. Contrarily, the structures I have developed in this research are made on planar substrates using lithography and plasma etching, and can be deliberately engineered for the required applications. Although the results and concepts developed in this research can be applied to other substrates, I have chosen silicon (Si) as the substrate of choice for implementing the PnBG structure due to its unique properties. I have also designed and implemented the fundamental building blocks of MM systems (e.g., resonators and waveguides) based on the developed PnBG structures and have shown that low loss and efficient MM devices can be made using the PnBG structures. As an example of the possible applications of these PnBG structures, I have shown that an important source of loss, the support loss, can be suppressed in MM resonators using PnBG structures. I have also made improvements in the characteristics of the developed MM PnBG resonators by developing and employing PnBG waveguides. I have further shown theoretically, that photonic band gaps (PtBGs) can also be simultaneously obtained in the developed PnBGs structures. This can lead to improved photon-phonon interactions due to the effective confinement of optical and mechanical vibrations in such structures. For the design, fabrication, and characterization of the structures, I have developed and utilized complex and efficient simulation tools, including a finite difference time domain (FDTD), a plane wave expansion (PWE), and a finite elements (FE) tool, each of which I have developed either completely from scratch, or by modification of an existing tool to suit my applications. I have also developed and used advanced micro-fabrication recipes, and characterization methods for realizing and characterizing these PnBG structures and devices. It is agued that by using the same ideas these structures can be fabricated at nanometer scales to operate at ultra high frequency ranges. I believe my contributions has opened a broad venue for new MM structures based on PnBG structures with superior characteristics compared to the conventional devices.
229

Pattern-integrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements

Burrow, Guy Matthew 15 June 2012 (has links)
A new type of photolithography, Pattern-Integrated Interference Lithography (PIIL), was demonstrated. PIIL is the first-ever integration of pattern imaging with interference lithography in a single-exposure step. The result is an optical-intensity distribution composed of a subwavelength periodic lattice with integrated functional circuit elements. To demonstrate the PIIL method, a Pattern-Integrated Interference Exposure System (PIIES) was developed that incorporates a projection imaging capability in a novel three-beam interference configuration. The purpose of this system was to fabricate, in a single-exposure step, representative photonic-crystal structures. Initial experimental results have confirmed the PIIL concept, demonstrating the potential application of PIIL in nano-electronics, photonic crystals, biomedical structures, optical trapping, metamaterials, and in numerous subwavelength structures. In the design of the PIIES configuration, accurate motif geometry models were developed for the 2D plane-group symmetries possible via linearly-polarized three-beam interference, optimized for maximum absolute contrast and primitive-lattice-vector direction equal contrast. Next, a straightforward methodology was presented to facilitate a thorough analysis of effects of parametric constraints on interference-pattern symmetries, motif geometries, and their absolute contrasts. With this information, the design of the basic PIIES configuration was presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane. Appropriate performance metrics were defined in order to quantify the characteristics of the resulting photonic-crystal structure.
230

An active core fiber optic gas sensor using a photonic crystal hollow core fiber as a transducer

Tipparaju, Venkata Satya Sai Sarma, January 2007 (has links)
Thesis (M.S.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.

Page generated in 0.0566 seconds