• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 61
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 236
  • 43
  • 39
  • 28
  • 26
  • 23
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Response of potato to paclobutrazol and manipulation of reproductive growth under tropical conditions

Tsegaw, Tekalign 08 February 2006 (has links)
High temperature limit successful potato cultivation in the lowlands of tropical regions. One effect of high temperature may be an increase in gibberellin activity that is inhibitory to tuberization. Paclobutrazol blocks gibberellin biosynthesis and reduces its level in the plant. The effect of paclobutrazol on potato was examined under non-inductive conditions in a greenhouse and under field conditions in the hot tropical lowlands of eastern Ethiopia. Paclobutrazol was applied as a foliar spray or soil drench at rates equivalent to 0, 2, 3, and 4 kg a. i. per ha. Paclobutrazol increased chlorophyll a and b content, and photosynthetic efficiency, enhanced early tuber initiation, delayed physiological maturity, and increased tuber fresh mass, dry matter content, specific gravity and crude protein content. It reduced the number of tubers per plant and extended the tuber dormancy period. Paclobutrazol reduced shoot growth, and plant height, and increased the partitioning of assimilates to the tubers while reducing assimilate supply to the leaves, stems, roots and stolons. Stomatal conductance and the rate of transpiration were reduced. In addition, paclobutrazol treatment increased tuber N, Ca and Fe content while reducing P, K and Mg content. Growth analyses indicated that paclobutrazol decreased leaf area index, crop growth rate, and total biomass production. It increased specific leaf weight, tuber growth rate, net assimilation rate, and partitioning coefficient (harvest index). Microscopic observations showed that leaves of treated plants developed thicker epicuticular wax layers. The epidermal, palisade and spongy mesophyll cells were larger. It increased the thickness of the cortex and the size of vascular bundles and pith cells of the stem. It also increased the width of the cortex and favoured the formation of more secondary xylem vessels, resulting in thicker roots. Deposition of starch grains in the stem pith cells, and cortical cells of the stem and root, were stimulated in response to paclobutrazol treatment. In most instances the method of application did not affect the efficiency of paclobutrazol. The effect of cultivar and reproductive growth on growth, photosynthetic efficiency, water relations, dry matter production, tuber yield and quality of potato was also the subject of investigation. Non-flowering, flowering and fruiting plants of cultivars Al-624, Al-436, CIP-388453-3(A) and CIP-388453-3(B) were evaluated under field conditions of a sub-humid tropical highland of eastern Ethiopia. Cultivars exhibited differences with respect to leaf stomatal conductance, rate of transpiration, net photosynthesis, biomass production and allocation, tuber yield, tuber size distribution, specific gravity, dry matter content and nutrient composition. Fruiting plants had higher leaf stomatal conductance, and higher rates of transpiration and photosynthesis rates. The leaf area index, tuber growth rate, and partitioning coefficient (harvest index) of the fruiting plants were reduced, but crop growth rates and net assimilation rates were higher. Without affecting total dry matter production, fruit development reduced the amount partitioned to the leaves, stems, roots, and tubers. Fruit development reduced total and marketable tuber mass and tuber numbers. The effect of MCPA and paclobutrazol were studied under greenhouse and field conditions. Single foliar sprays were applied during the early and full bud development stages at rates of 0, 250, 500, and 750 g a.i. ha-1. Both MCPA and paclobutrazol greatly reduced the number of flowers and completely inhibited berry set. MCPA did not affect the number, yield, dry matter content and specific gravity of tubers. Without affecting the number of tubers, paclobutrazol increased tuber yield, dry matter content and specific gravity. / Thesis (DPhil (Horticultural Science))--University of Pretoria, 2007. / Plant Production and Soil Science / unrestricted
202

Efeito de poluentes metálicos nos níveis de pigmentos fotossintéticos presentes em algas marinhas e avaliação do papel estrutural de carotenos em membranas miméticas / Effect of metallic pollutants in marine algae pigments contents and evaluation of carotenes structural features in mimetic membranes

Ana Maria Pereira Neto 30 November 2007 (has links)
Este trabalho envolve o estudo sobre os níveis de pigmentos fotossintéticos, carotenóides e clorofilas, presentes nas algas marinhas Tetraselmis gracilis e Gracilaria tenuistipitata, em condições de senescência celular e estresse antropogênico (poluição metálica). Em razão do papel fundamental dos carotenóides na organização de membranas tilacóides, o papel estrutural de carotenos e do extrato metanólico de T. gracilis em bicamadas lipídicas também foi avaliado. Para estes estudos foram realizados o cultivo, coleta e construção das curvas de crescimento das algas, obtenção dos cromatogramas típicos, identificação de alguns pigmentos fotossintéticos através de padrões, análise dos extratos brutos em diferentes fases de crescimento e respectiva quantificação. Foram realizados bioensaios de toxicidade dos metais Cd, Cu, Hg e Pb e foram estimados os parâmetros toxicológicos CE15 e CE50 (concentração efetiva para a redução de 15 e 50%, respectivamente, do crescimento algal). Os modelos de estresse agudo e crônico foram construídos para cada metal e a quantificação dos pigmentos fotossintéticos foi realizada. Lipossomos foram confeccionados com a incorporação de carotenos e do extrato metanólico de T. gracilis na bicamada e foram realizadas medidas de espalhamento de luz, de calorimetria, do diâmetro hidrodinâmico e de fosfolípides. A cinética de liberação e de permeação de NO foi estudada através de medidas de fluorescência e de quimiluminescência. Também foi realizada a extração e pré-isolamento dos carotenóides presentes em T. gracilis. Os mecanismos de defesa contra espécies reativas de oxigênio foram diferentes em razão das distintas variações observadas nos níveis de pigmentos para cada metal estudado e tipo de estresse. Também foi observado um aumento do nível de pigmentos em função do aumento do tempo de exposição correspondendo provavelmente a uma estratégia aclimatativa extremamente importante no papel de adaptação e sobrevivência de organismos fotossintéticos, o que torna este tipo de avaliação, principalmente dos níveis de carotenóides, uma ferramenta útil como parâmetro de avaliação de poluição ambiental, além do emprego da biomassa como ferramenta de biorremoção de metais. Em relação aos valores de CE50 observados, o valor encontrado para o Cu foi inferior ao padrão previsto na Resolução do CONAMA no 357. Portanto, efluentes contendo Cu em níveis permitidos poderão causar danos à biota marinha. Mais ainda, sugere-se que os limites recomendáveis para este metal deverão ser revistos e alterados para a preservação de ecossistemas aquáticos. A incorporação do extrato de T. gracilis ocasionou uma grande perturbação na estruturação da membrana, resultando na fluidificação da bicamada lipídica, independente da fase de crescimento. O β-caroteno e o licopeno interferem na estruturação de bicamadas lipídicas diminuindo o diâmetro hidrodinâmico das vesículas unilamelares grandes, efeito ainda não descrito na literatura, reduzindo o valor da temperatura na qual se inicia a transição de fase, alargando a faixa onde ocorre a transição, reduzindo os valores capacidade calorífica e da entalpia e, conseqüentemente, modificando a cooperatividade da transição. Somente o β-caroteno causou fluidificação do sistema lipídico e aumento da velocidade de permeação de NO através da membrana, sugerindo o provável papel do β-caroteno na modulação de propriedades físicas da membrana. / This work involves the study of the levels of photosynthetic pigments, carotenoids and chlorophylls, contained in the marine algae Tetraselmis gracilis and Gracilaria tenuistipitata, under conditions of cellular senescence and anthropogenic stress (metallic pollution). Due to the fundamental organizational role of carotenoids in thylakoid membranes, its structural features in lipid bilayers were evaluated. Also in this last mentioned study, it was employed the methanolic extract of T. gracilis. In order to perform these studies, the algae were cultivated and the growth curves determined. Also, the typical chromatograms were obtained, and some photosynthetic pigments were identified trough commercial standards, which were then analyzed and quantified in crude extracts of different growth phases. The toxicity of the metals Cd, Cu, Hg and Pb were determined trough bioassays, which led to the toxicological parameters EC15 and EC50 estimation (the effective concentration that causes 15 and 50% of reduction of the algal growth, respectively). For each metal, the acute and chronic stress models were built, and the photosynthetic pigments contents\' quantified. Liposomes were constructed with the incorporation of carotenes and of the T. gracilis\' methanolic extract in the bilayer, which were then submitted to light scattering, calorimetric, hydrodynamic radius and phospholipid assays. Fluorescence and chemiluminescence measurements were used to study the NO kinetics of liberation and permeation. Also, it was accomplished the extraction and pre-isolation of carotenes contained in T. gracilis. For each type of metal and stress occasioned, different levels of pigments were observed, a consequence of the different mechanisms employed against reactive oxygen species. At higher exposure periods, higher pigments\' contents were quantified, which probably corresponds to an algae acclimatative strategy. The EC50 value found for Cu is higher than the standard one previously stated in the CONAMA\'s nº 357 resolution. This means that effluents containing Cu, in levels allowed by the law, may cause damage to the marine biota. Moreover, it\'s suggested a reevaluation of the standard limiting value for this metal, in order to preserve aquatic ecosystems. A higher fluidity of the lipid bilayer, occasioned by a large perturbation of the membrane\'s structure, was accomplished by incorporating the extract of T. gracilis. This was observed independently of the cells\' growth phase. &$946;-carotene and licopene interfere in the lipid bilayer structure, lowering the hydrodynamic diameter of large unilamellar vesicles, an effect not previously reported in literature. This reduces the temperature were the phase transition initiates, broadens the transition gap, lowers the calorific capacity and enthalpy values, consequently, modifying the transition cooperation. Only β-carotene induces a higher fluidity of the lipid system and a faster NO permeation trough the membrane, which suggests that it may modify physical properties of the membrane.
203

Markery fyziologického stavu borovice ve vztahu ke genetické variabilitě / Markers of pine physiological state in relation to genetic variability

Šafránková, Anna January 2016 (has links)
Breeding of coniferous trees in the Czech Republic is undergoing an important development during last decades, especially thanks to molecular-genetic methods, which refine and simplify mapping of tree genotypes and the selection of superior genotypes. Recently, in the Czech Republic superior genotypes are selected based on forestry parameters (tree height, trunk diameter, and timber quality) what does not always correlate with the ability of a tree to resist abiotic and biotic stresses. Recently, there is an effort to include in the breeding also physiological parameters and select superior genotypes using nonspecific stress indicators, which are able to correspond better to tree fitness than the forestry growth parameters. The present thesis deals with genotypes of Scots pine (Pinus sylvestris L.) growing in seed orchards Doubrava and Silov in the Pilsen region in the Czech Republic. Seed orchards are tree plantations, which serve as a reserve of the genetically valuable reproduction material, they are parts of breeding programs. Pine needles were collected in July 2015 and analyzed for non-specific stress indicators - photosynthetic pigments, phenolics, lignin, cellulose and proline contents and leaf reflectance and fast chlorophyll fluorescence measurements. First objective of the present thesis...
204

Physio-biochemical characterization of two wheat cultivars to Fusarium proliferatum infection

January 2019 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / Wheat is a key global commodity in terms of acreage and tradeable value and as a staple in household diets. Many factors including biotic stress conditions have detrimental effects on global wheat production and yield. The increasing prevalence of biotic stress inflicted by fungal species such as Fusarium has significantly reduced yield and quality of cereal crops thus, threatening sustainable agriculture and food security. Interactions between wheat and Fusarium spp. such as Fusarium proliferatum triggers the accumulation of reactive oxygen species (ROS) to levels toxic to the plant thus leading to oxidative damage and ultimate cellular death. In order to maintain redox homeostasis, plants rely on ROS-scavenging antioxidants (enzymatic and non-enzymatic) to control ROS molecules to levels less toxic to plants. This study investigated the impact of F. proliferatum on the physio-biochemical responses of two wheat cultivars (SST 015 and SST 088). Changes in seed germination, growth, biomass, chlorophyll and mineral contents were monitored. Furthermore, changes in ROS accumulation and antioxidant enzyme activity was measured in the shoots of both wheat cultivars.
205

Physiological and molecular characterization of wheat cultivars to Fusarium oxysporum infection

Davids, Danielle Andrea January 2019 (has links)
>Magister Scientiae - MSc / Biotic stress is one of the main causes for agricultural loss of economically important cereal crops. The increasing prevalence of biotic stress inflicted by fungal species such as Fusarium has significantly reduced yields and quality of cereals, threatening sustainable agriculture and food security worldwide. Interactions between wheat and Fusarium spp. such as Fusarium oxysporum promotes the accumulation of reactive oxygen species (ROS). Overproduction of ROS can become toxic to plants depending on the scavenging ability of antioxidant systems to maintain redox homeostasis. This study investigated the effects of F. oxysporum on the physiological and biochemical response of three wheat cultivars namely, SST 056, SST 088 and SST 015. Physiological responses were monitored by measuring changes observed in plant growth parameters including shoot and root growth and biomass, relative water content as well as photosynthetic metabolism and osmolyte content in all three wheat cultivars. Downstream biochemical analysis involved monitoring the accumulation of ROS biomarkers (superoxide and hydrogen peroxide) as well as the detection of enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). These biochemical responses were only monitored on the two wheat cultivars which presented contrasting responses to F. oxysporum infection. Results showed that F. oxysporum significantly reduced plant growth, biomass, chlorophyll pigments and relative water content of all three cultivars, with the highest reduction observed for SST 088 relative to SST 015 and SST056. On the other hand, proline content was significantly enhanced in all three wheat cultivars, with the highest increase observed for SST 015 relative to SST 056 and SST 088. Based on the contrasting physiological results observed for these three cultivars, downstream biochemical analysis was focused on SST 015 and SST 088. F. oxysporum trigged an increased in superoxide and hydrogen peroxide contents in both cultivars, with the highest increase observed for SST 088. A similar trend was observed for the extent of lipid peroxidation, manifested as enhanced MDA levels. Furthermore, F. oxysporum differentially altered antioxidant enzyme activity relative to the control of both wheat cultivars. A Significant increase in SOD activity was observed for both cultivars in response to F. oxysporum. However, contrasting responses in APX and POD activity (as seen for the band intensities of individual isoforms) was observed in these wheat cultivars in response to F. oxysporum. Based on the results obtained in this study we suggest that F. oxysporum infection has varying degrees of severity in different wheat cultivars. In light of the significant reduction of plant development coupled with enhanced ROS accumulation and differential antioxidant capacity for SST 015 relative SST 088, we suggest that SST 015 is more resilient to F. oxysporum. We thus conclude that a direct relationship exists between ROS accumulation and antioxidant scavenging in regulating plant tolerance against F. oxysporum pathogens.
206

Light Reactions of Photosynthesis: Exploring Early Energy and Electron Transfers in Cyanobacterial Photosystem I via Optical Spectroscopy

Antoine P. Martin (5930030) 14 December 2020 (has links)
<p>Early processes following photon absorption by the photosynthetic pigment-protein complex photosystem I (PS I) have been the subject of decades of research, yet many questions remain in this area of study. Among the trickiest to investigate is the role of the PS I reaction center’s (RC’s) two accessory (A<sub>‑1</sub>) chlorophyll (Chl) cofactors as primary electron donors or acceptors, oxidizing the special pair (P<sub>700</sub>) of Chls or reducing a nominal primary electron acceptor (A<sub>0</sub>) Chl in the first electron transfer step. Such processes, which occur on a picosecond timescale, have long been studied via ultrafast spectroscopy, though difficulty lies in distinguishing among signals from early processes, which have similar lifetimes and involve many identical pigments. In this work, we used steady-state and ultrafast optical pump-probe spectroscopies on PS I trimers from wildtype and mutant strains of the cyanobacterium <i>Synechocystis</i> sp. PCC 6803 in which an asparagine amino acid residue near A<sub>‑1</sub> had been replaced with methionine on one or both sides of the RC. We also conducted an identical set of experiments on mutants in which A<sub>0</sub> was similarly targeted, as well as studied the effects on the A<sub>0</sub> absorption spectrum of a third category of mutations in which a peripheral H‑bond to A<sub>0</sub> was lost. Steady-state absorption spectroscopy revealed that many of these mutations caused mild Chl deficiencies in the light-capturing antenna of PS I without necessarily preventing organisms’ growth. More importantly, we determined that contrary to certain hypotheses, A<sub>‑1</sub> is the most likely true first electron acceptor, as reasoned from observing rapid triplet state formation in double A<sub>‑1</sub> mutants. We also concluded from non-additive detrimental effects of single-side mutations that if one RC branch is damaged at the level of A<sub>0</sub> or A<sub>‑1</sub>, electron transfer may be redirected along the intact branch. This may help explain the conservation of two functional RC branches in PS I over many generations of natural selection, despite the additional cost to organisms of manufacturing both.</p>
207

Umělá světlosběrná anténa založená na agregaci bakteriochlorofylu c s vybranými pigmenty / Artificial light-harvesting antenna based on an aggregation of bacteriochlorophyll c with selected pigments

Malina, Tomáš January 2020 (has links)
Title: Artificial light-harvesting antenna based on an aggregation of bacteriochlorophyll c with selected pigments Author: Tomáš Malina Department: Department of Chemical Physics and Optics Supervisor of the master thesis: doc. RNDr. Jakub Pšenčík, Ph.D., KCHFO MFF UK Abstract: Solar energy is one of the most important energy sources for all living organisms. The light harvesting takes place in specialised photosynthetic complexes called antennas; they typically contain pigments held by a protein scaffold. Antennas of green bacteria, chlorosomes, are unique in this respect, for they do not need proteins to organise the pigments. The pigments contained in chlorosomes, bacteriochlorophyll (BChl) c, d or e, aggregate spontaneously. This self-aggregation can be used to form an artificial light-harvesting antenna the absorption spectrum of which can be extended by addition of other pigments. Antennas based on aggregation of BChl c with β-carotene and BChl a were prepared by a fast and slow method. The excitation energy transfer efficiency between these pigments was studied. The efficiency of energy transfer from BChl c to BChl a reached up to 95 %, the efficiency of energy transfer from β-carotene to BChl c was lower. An important role of β- carotene in artificial aggregates as well as in chlorosomes is its...
208

Computer simulation meets experiment: Molecular dynamics simulaitons of spin labeled proteins.

Gajula, M.N.V. Prasad 18 March 2008 (has links)
EPR spectroscopy of site-directed spin labeled proteins is extremely informative in the studies of protein dynamics; however, it is difficult to interpret the spectra in terms of the conformational dynamics in atomic detail.In the present work we aimed to investigate the site-specific structural dynamics of proteins by using MD simulations upon analyzing and interpreting the EPR data. The major goal of this work is to know how far the computer simulations can meet the experiments. As a first step, MD simulations are performed to identify the location and orientation of the tyrosine radical in the R2 subunit of ribonucleotide reductase. The MD results show that the tyrosine is moving away from the diiron center in its radical state. This data is in agreement with EPR results and suggests reorientation of the tyrosine radical when compared to its neutral state. In further studies, the behavior of a methanethiosulfonate spin label, R1, in various environments of the protein is characterized by using MD simulations. RMSD analysis and angle ß distributions of the nitroxide show that R1 in buried sites in a protein helix is significantly immobile and in surface exposed sites it is highly mobile. Analyses of MD data suggest that internal rotations of x4 and x5 dihedrals of R1 are dominant in the R1 dynamics.Our studies also show that interaction with the surrounding residues show significant influence on the dynamics of R1. MD simulations data of the vinculin tail protein, both in water and in vacuo, are compared to the experimental results for further analysis of 12 different R1 sites in various environments.In a study on the photosynthetic reaction center(RC),MD is used to identify the location of the R1 binding site (H156)and thereby exploring the conformational dynamics in the RC protein upon light activation. The distance between the primary quinone, QA, and H156R1 determined from MD is in reasonable agreement with that measured by EPR.
209

Isotopic Investigations of Carbon Cycling And Microbially Influenced Carbonate Precipitation In Freshwater Microbialites And Carbonate-Rich Microbial Mats / Microbial Carbon Cycling and Isotope Biosignatures

Brady, Allyson Lee January 2009 (has links)
<p>Modern microbialites and microbial mats are the focus of ongoing research as they provide an opportunity to understand microbial-mineral interactions during carbonate precipitation and the generation of biosignatures that can inform our interpretation of the geological record. This study determined the natural abundance isotopic compositions ([13]C, [14]C) of the primary carbon pools and microbial communities associated with modern freshwater microbialites located in Pavilion Lake and in carbonate rich microbial mats on the nearby Cariboo Plateau in British Columbia, Canada. </p> <p> Natural abundance [14]C analysis of carbon pools associated with the Pavilion Lake microbialites demonstrated that structures were actively growing and that groundwater carbon inputs to the lake and microbialites were minimal. Rather, ambient dissolved inorganic carbon (DIC) was the primary carbon source for both microbial communities and recent carbonate. </p> <p> Isotopic enrichment of calcium carbonate within microbial communities associated with the microbialites was identified as a biosignature of microbial photosynthetic influence driving precipitation. Elevated oxygen concentrations and pH within the microenvironment of small, sporadic nodular microbial surface communities was concurrent with in situ precipitation of carbonate with δ[13]C values higher than predicted abiotic values and δ[13]C of bulk organic matter and phospholipid fatty acids (PLFA) that were consistent with a photosynthetically dominated community. Elevated carbonate δ[13]C values were also noted in the thin surface microbial mat recovered from shallow (11m) microbialites. These samples showed increased biomass during summer sampling periods as compared to deeper samples, consistent with expected high rates of photosynthetic activity due to higher light levels and temperature at these depths. These results contrast other recent studies of modern microbialite systems that identified biosignatures of heterotrophic influences on precipitation of carbonates. PLFA profiles demonstrated that the surface microbial mat community consisting of both photosynthetic and heterotrophic microbes was stable over seasonal and spatial changes in light and temperature. However, changes in microbial biomass with depth and season indicated that microbial activity and growth plays an important role in the development of isotopic biosignatures. </p> <p> Biosignatures of high levels of photosynthetic activity were also observed in carbonate, rich microbial mats that exhibited undersaturated p CO2 concentrations during the summer and DIC δ[13]C values enriched above values predicted for isotopic equilibrium with atmospheric CO2. Seasonal and annual shifts in the balance of heterotrophy and autotrophy in the lakes and microenvironment of the mat accounted for observed variations in DIC and associated carbonate δ[13]C values. In contrast to other organic rich microbial mats, bulk organic δ[13]C values were not enriched and the systems did not show evidence of CO2 limitation. Rather, these results indicated that low bulk organic δ[13]C values and large isotopic discriminations can exist under conditions of high DIC concentrations and carbonate content that provide a non limiting carbon source to replenish photosynthetic drawdown. </p> / Thesis / Doctor of Philosophy (PhD)
210

Characterization of the photosynthetic apparatus of Chlorella BI sp., an Antarctica mat alga under varying trophic growth states

Jaffri, Sarah 03 May 2011 (has links)
No description available.

Page generated in 0.0705 seconds