• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 42
  • 22
  • 14
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 92
  • 57
  • 38
  • 37
  • 33
  • 33
  • 31
  • 29
  • 28
  • 27
  • 27
  • 25
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-commutative quantum mechanics : properties of piecewise constant potentials in two dimensions

Thom, Jacobus D. (Jacobus Daniel) 12 1900 (has links)
Thesis (PhD (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The aim of this thesis is threefold. Firstly, I give an overview of non-commutative quan- tum mechanics and build up a description of non-commutative piecewise constant poten- tial wells in this context. Secondly, I look at some of the stationary properties of a finite non-commutative well using the mathematical tools laid out in the first part. Lastly, I in- vestigate how non-commutativity affects the tunneling rate through a barrier. Throughout this work I give the normal commutative descriptions and results for comparsion. / AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is drievoudig. Eerstens gee ek ’n oorsig van niekommutatiewe kwantummeganika en bou daarmee ’n beskrywing van niekommutatiewe deelswyskon- stante potensiaal putte op. Tweedens kyk ek na ’n paar van die stasionˆere eienskappe van ’n eindige niekommutatiewe potensiaal put deur die wiskunde te gebruik wat in die eerste deel uiteengesit is. Laastens ondersoek ek hoe niekommutatiwiteit die spoed van tonneling deur ’n potensiaal wal be¨ınvloed. Dwarsdeur die hierdie hele tesis gee ek die normale kommutatiewe beskrywings en resultate vir maklike vergelyking.
42

Estudo da dinâmica de evolução do HIV em seres humanos utilizando sistema de equações diferenciais ordinárias

Vicentin, Daniel Chieregato January 2019 (has links)
Orientador: Tiago de Carvalho / Resumo: O objetivo desta dissertação é abordar aspectos qualitativos de sistemas de equações diferenciais ordinárias e sistemas contínuos suaves por partes aplicados à dinâmica do Vírus da Imunodeficiência Humana (HIV). Neste trabalho, apresentamos um modelo matemático que descreve a dinâmica do HIV no corpo humano e o analisamos através da matriz da próxima geração e teoria de estabilidade, com a finalidade de prever se a doença fica ou não controlada. Posteriormente, estudamos um sistema de equações diferenciais ordinárias usado para modelar a dinâmica do vírus para diferentes tipos de tratamentos. Tal modelo foi explorado qualitativamente de duas maneiras: por um sistema contínuo (pelo método de Korobeinikov) e por um descontínuo (pelas convenções de Filippov). Analisamos o comportamento dinâmico de terapias antirretrovirais, visando a diminuição das concentrações virais no sangue, de acordo com a análise da estabilidade realizada. / Abstract: The goal of this dissertation is to study qualitative aspects about systems of ordinary differential equations and piecewise smooth systems applied to the dynamic of Human Immunodeficiency Virus (HIV). In this work, we present a mathematical model that describes the dynamic of HIV in the human body and we analyze this model by next-generation matrix and stability theory in order to predict if the disease becomes stable, and thus stop virus transmission. In addition, we studied another system of ordinary differential equations that were proposed to model the HIV dynamics assuming different therapies. We have explored qualitatively the model by two distinct approaches: a continuous system (by Korobeinikov method) and a discontinuous system (by Filippov theory). Due to the stability analysis, it was possible to understand the dynamics of anti-retroviral therapies, which are responsible for decreasing the concentration of detectable HIV in blood. / Mestre
43

Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics

Gratton, David, Willcox, Karen E. 01 1900 (has links)
A trajectory piecewise-linear (TPWL) approach is developed for a computational fluid dynamics (CFD) model of the two-dimensional Euler equations. The approach uses a weighted combination of linearized models to represent the nonlinear CFD system. The proper orthogonal decomposition (POD) is then used to create a reduced-space basis, onto which the TPWL model is projected. This projection yields an efficient reduced-order model of the nonlinear system, which does not require the evaluation of any full-order system residuals. The method is applied to the case of flow through an actively controlled supersonic diffuser. With an appropriate choice of linearization points and POD basis vectors, the method is found to yield accurate results, including cases with significant shock motion. / Singapore-MIT Alliance (SMA)
44

A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices

Rewieński, Michał 01 1900 (has links)
In this paper we present an approach to the nonlinear model reduction based on representing the nonlinear system with a piecewise-linear system and then reducing each of the pieces with a Krylov projection. However, rather than approximating the individual components to make a system with exponentially many different linear regions, we instead generate a small set of linearizations about the state trajectory which is the response to a 'training input'. Computational results and performance data are presented for a nonlinear circuit and a micromachined fixed-fixed beam example. These examples demonstrate that the macromodels obtained with the proposed reduction algorithm are significantly more accurate than models obtained with linear or the recently developed quadratic reduction techniques. Finally, it is shown tat the proposed technique is computationally inexpensive, and that the models can be constructed 'on-the-fly', to accelerate simulation of the system response. / Singapore-MIT Alliance (SMA)
45

Algorithms For Piecewise Linear Knapsack Problems With Applications In Electronic Commerce

Kameshwaran, S 08 1900 (has links) (PDF)
No description available.
46

On L1 Minimization for Ill-Conditioned Linear Systems with Piecewise Polynomial Solutions

Castanon, Jorge Castanon 13 May 2013 (has links)
This thesis investigates the computation of piecewise polynomial solutions to ill- conditioned linear systems of equations when noise on the linear measurements is observed. Specifically, we enhance our understanding of and provide qualifications on when such ill-conditioned systems of equations can be solved to a satisfactory accuracy. We show that the conventional condition number of the coefficient matrix is not sufficiently informative in this regard and propose a more relevant conditioning measure that takes into account the decay rate of singular values. We also discuss interactions of several factors affecting the solvability of such systems, including the number of discontinuities in solutions, as well as the distribution of nonzero entries in sparse matrices. In addition, we construct and test an approach for computing piecewise polynomial solutions of highly ill-conditioned linear systems using a randomized, SVD-based truncation, and L1-norm regularization. The randomized truncation is a stabilization technique that helps reduce the cost of the traditional SVD truncation for large and severely ill-conditioned matrices. For L1-minimization, we apply a solver based on the Alternating Direction Method. Numerical results are presented to compare our approach that is faster and can solve larger problems, called RTL1 (randomized truncation L1-minimization), with a well-known solver PP-TSVD.
47

Identification of switched linear regression models using sum-of-norms regularization

Ohlsson, Henrik, Ljung, Lennart January 2013 (has links)
This paper proposes a general convex framework for the identification of switched linear systems. The proposed framework uses over-parameterization to avoid solving the otherwise combinatorially forbidding identification problem, and takes the form of a least-squares problem with a sum-of-norms regularization, a generalization of the ℓ1-regularization. The regularization constant regulates the complexity and is used to trade off the fit and the number of submodels. / <p>Funding Agencies|Swedish foundation for strategic research in the center MOVIII||Swedish Research Council in the Linnaeus center CADICS||European Research Council|267381|Sweden-America Foundation||Swedish Science Foundation||</p>
48

Dynamic Programming Approach to Price American Options

Yeh, Yun-Hsuan 06 July 2012 (has links)
We propose a dynamic programming (DP) approach for pricing American options over a finite time horizon. We model uncertainty in stock price that follows geometric Brownian motion (GBM) and let interest rate and volatility be fixed. A procedure based on dynamic programming combined with piecewise linear interpolation approximation is developed to price the value of options. And we introduce the free boundary problem into our model. Numerical experiments illustrate the relation between value of option and volatility.
49

Table Based Design for Function Evaluation and Error Correcting Codes

Wen, Chia-Sheng 23 July 2012 (has links)
Lookup-table (LUT)-based method is a common approach used in all kinds of research topics. In this dissertation, we present several new designs for table-based function evaluation and table-based error correcting coding. In Chapter 3, a new function evaluation method, called two-level approximation, is presented where piecewise degree-one polynomials are used for initial approximation in the first level, followed by the refined approximation for the shared normalized difference functions in the second level. In Chapter 4, we present a new non-uniform segmentation method that searches for the optimal segmentation scheme with the different design goals of minimizing either ROM, total area, or delay. In Chapter 5, a new design methodology for table-based function evaluation is presented. Unlike previous approaches that usually determine the bit widths by assigning allowable errors for individual hardware components, the total error budget of our new design is considered jointly in order to optimized the bit widths of all the hardware components, leading to significant improvements in both area and delay. Finally, in Chapter 6, the similar table-based concept is used in the design of error correcting encoder using the modified polynomial of the Lagrange interpolation formula, resulting in smaller critical path delay and lower power consumption.
50

Improved Bit-Level Truncation with Joint Error Analysis for Table-Based Function Evaluation

Lin, Shin-hung 12 September 2012 (has links)
Function evaluation is often used in many science and engineering applications. In order to reduce the computation time, different hardware implementations have been proposed to accelerate the speed of function evaluation. Table-based piecewise polynomial approximation is one of the major methods used in hardware function evaluation designs that require simple hardware components to achieve desired precision. Piecewise polynomial method approximates the original function values in each partitioned subinterval using low-degree polynomials with coefficients stored in look-up tables. Errors are introduced in the hardware implementations. Conventional error analysis in piecewise polynomial methods includes four types of error sources: polynomial approximation error, coefficient quantization error, arithmetic truncation error, and final rounding error. Typical design approach is to pre-allocated maximum allowable error budget for each individual hardware component so that the total error induced from these individual errors satisfies the bit accuracy. In this thesis, we present a new design approach by jointly considering the error sources in designing all the hardware components, including look-up tables and arithmetic units, so that the total area cost is reduced compared to the previously published designs.

Page generated in 0.0247 seconds