• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 42
  • 22
  • 14
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 92
  • 57
  • 38
  • 37
  • 33
  • 33
  • 31
  • 29
  • 28
  • 27
  • 27
  • 25
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estudo de sistemas lineares por parte com três zonas e aplicação na análise de um circuito elétrico envolvendo um memristor /

Scarabello, Marluce da Cruz. January 2012 (has links)
Orientador: Marcelo Messias / Banca: Cristiane Nespoli Morelato França / Banca: Paulo Ricardo da Silva / Resumo: Em um artigo publicado em maio de 2008 na revista Nature [17], um grupo de pesquisadores da Hewllet-Packard Company (HP) anunciou a fabricação de um componente eletrônico chamado memristor, uma contração para "memory resistor". A existência teórica dos memristores havia sido prevista em 1971, pelo Engenheiro da Universidade da Califórnia em Berkeley, Leon Chua, com base em propriedades de simetria de certos circuitos elétricos, porém até 2008 sua existência física não havia sido comprovada. Tal componente é considerado o quarto componente eletrônico fundamental, ao lado do resistor, do capacitor e do indutor, pois possui propriedades que não podem ser duplicadas por nenhuma combinação desses três outros componentes. A construção física do memristor atraiu grande interesse no mundo todo, devido ao grande potencial de aplicações deste componente. No presente trabalho fazemos um estudo das bifurcações que ocorrem em um sistema de equações diferenciais ordinárias, que serve como modelo matemático de um circuito elétrico formado pelos quatro elementos fundamentais: um memristor, um capacitor, um indutor e um resistor. O circuito estudado foi proposto por Itoh e Chua em [9]... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In the present work we make a bifurcation analysis of a system of ordinary differential equations, which serves as a mathematical model of an electric circuit formed by the four fundamental elements: one memristor, one capacitor, one inductor and one resistor. The studied circuit was proposed by Itoh and Chua in [9] and was constructed based on the well-known Chua's oscillators. The studied model is given by a discontinuous piecewise-linear system, defined on three zones in R^3, determined by the following inequalities: |z|<1 (called central zone) and |z|>1 (called external zones). The z-axis is composed by equilibrium points of the system. The local normal stability of these equilibira in each zone is analyzed. We show that, due to the existence of this line of equilibria, the phase space R^3 is foliated by invariant planes transversal to the z-axis and parallel to each other, in each zone. The solutions of the system are contained in a combination of three of these invariant planes: one of them in the central zone and the other two in the external zones. We also show that the system may present nonlinear oscillations due to the existence of periodic orbits passing through two of the three zones or passing by three zones. The analysis developed here has analytical and numerical parts. The analytical part was developed based on the study of planar piecewise-linear systems with three zones presented by Freire et al. in [5]... (Complete abstract click electronic access below) / Mestre
32

Något om regressionsanalys

Pettersson, Angelica January 2009 (has links)
En gren inom statistikteorin är den så kallade Regressionsanalysen där man studerar hur data från exempelvis ett stickprov kan anpassas till en graf. Skrivandet av denna uppsats har haft som syfte att studera några av de metoder som finns att tillgå vid bestämning av de ingående parametrarna i de enklare fallen av regression. Dessutom ges i de avslutande kapitlen exempel på den del inom regressionsanalysen som kallas Styckvis Linjär Regression eller Piecewise Linear Regression. / Presentationen är redan avklarad den 26 april 2010 kl. 11.30
33

Border collision bifurcations in piecewise smooth systems

Wong, Chi Hong January 2011 (has links)
Piecewise smooth maps appear as models of various physical, economical and other systems. In such maps bifurcations can occur when a fixed point or periodic orbit crosses or collides with the border between two regions of smooth behaviour as a system parameter is varied. These bifurcations have little analogue in standard bifurcation theory for smooth maps and are often more complex. They are now known as "border collision bifurcations". The classification of border collision bifurcations is only available for one-dimensional maps. For two and higher dimensional piecewise smooth maps the study of border collision bifurcations is far from complete. In this thesis we investigate some of the bifurcation phenomena in two-dimensional continuous piecewise smooth discrete-time systems. There are a lot of studies and observations already done for piecewise smooth maps where the determinant of the Jacobian of the system has modulus less than 1, but relatively few consider models which allow area expansions. We show that the dynamics of systems with determinant greater than 1 is not necessarily trivial. Although instability of the systems often gives less useful numerical results, we show that snap-back repellers can exist in such unstable systems for appropriate parameter values, which makes it possible to predict the existence of chaotic solutions. This chaos is unstable because of the area expansion near the repeller, but it is in fact possible that this chaos can be part of a strange attractor. We use the idea of Markov partitions and a generalization of the affine locally eventually onto property to show that chaotic attractors can exist and are fully two-dimensional regions, rather than the usual fractal attractors with dimension less than two. We also study some of the local and global bifurcations of these attracting sets and attractors.Some observations are made, and we show that these sets are destroyed in boundary crises and some conditions are given.Finally we give an application to a coupled map system.
34

Global Optimization Using Piecewise Linear Approximation

January 2020 (has links)
abstract: Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early stages, MILP methods and software tools had improved in their efficiency in the past few years. They are now fast and robust even for problems with millions of variables. Therefore, it is desirable to use MILP software to solve mixed integer nonlinear programming (MINLP) problems. For an MINLP problem to be solved by an MILP solver, its nonlinear functions must be transformed to linear ones. The most common method to do the transformation is the piecewise linear approximation (PLA). This dissertation will summarize the types of optimization and the most important tools and methods, and will discuss in depth the PLA tool. PLA will be done using nonuniform partitioning of the domain of the variables involved in the function that will be approximated. Also partial PLA models that approximate only parts of a complicated optimization problem will be introduced. Computational experiments will be done and the results will show that nonuniform partitioning and partial PLA can be beneficial. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2020
35

Knotilus: A Differentiable Piecewise Linear Regression Framework

Gormley, Nolan D. 27 May 2021 (has links)
No description available.
36

Approximation of Nonlinear Functions for Fixed-Point and ASIC Applications Using a Genetic Algorithm

Hauser, James William 11 October 2001 (has links)
No description available.
37

A Triangulation-Based Approach to Nonrigid Image Registration

Linden, Timothy R. 12 July 2011 (has links)
No description available.
38

Periodic Solutions And Stability Of Differential Equations With Piecewise Constant Argument Of Generalized Type

Buyukadali, Cemil 01 July 2009 (has links) (PDF)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincar&eacute / , the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant argument of generalized type in noncritical case, that is, the unperturbed linear ordinary differential equation has not any nontrivial periodic solution, are investigated. The continuous and differential dependence of the solutions on an initial value and a parameter is considered. A new Gronwall-Bellmann type lemma is proved. Next, quasilinear differential equations with alternately advanced-retarded piecewise constant argument of generalized type is addressed. The critical case, when associated linear homogeneous system admits nontrivial periodic solutions, is considered. Using the technique of Poincar&eacute / -Malkin, criteria of existence of periodic solutions of such equations are obtained. One of the main auxiliary results is an analogue of Gronwall-Bellmann Lemma for functions with alternately advanced-retarded piecewise constant argument. Dependence of solutions on an initial value and a parameter is investigated. Finally, a new class of differential equations with state-dependent piecewise constant argument is introduced. It is an extension of systems with piecewise constant argument. Fundamental theoretical results for the equations: existence and uniqueness of solutions, the existence of the periodic solutions, the stability of the zero solution are obtained. Appropriate examples are constructed.
39

Radial Basis Functions Applied to Integral Interpolation, Piecewise Surface Reconstruction and Animation Control

Langton, Michael Keith January 2009 (has links)
This thesis describes theory and algorithms for use with Radial Basis Functions (RBFs), emphasising techniques motivated by three particular application areas. In Part I, we apply RBFs to the problem of interpolating to integral data. While the potential of using RBFs for this purpose has been established in an abstract theoretical context, their use has been lacking an easy to check sufficient condition for finding appropriate parent basic functions, and explicit methods for deriving integral basic functions from them. We present both these components here, as well as explicit formulations for line segments in two dimensions and balls in three and five dimensions. We also apply these results to real-world track data. In Part II, we apply Hermite and pointwise RBFs to the problem of surface reconstruction. RBFs are used for this purpose by representing the surface implicitly as the zero level set of a function in 3D space. We develop a multilevel piecewise technique based on scattered spherical subdomains, which requires the creation of algorithms for constructing sphere coverings with desirable properties and for blending smoothly between levels. The surface reconstruction method we develop scales very well to large datasets and is very amenable to parallelisation, while retaining global-approximation-like features such as hole filling. Our serial implementation can build an implicit surface representation which interpolates at over 42 million points in around 45 minutes. In Part III, we apply RBFs to the problem of animation control in the area of motion synthesis---controlling an animated character whose motion is entirely the result of simulated physics. While the simulation is quite well understood, controlling the character by means of forces produced by virtual actuators or muscles remains a very difficult challenge. Here, we investigate the possibility of speeding up the optimisation process underlying most animation control methods by approximating the physics simulator with RBFs.
40

Infinitesimal Phase Response Curves for Piecewise Smooth Dynamical Systems

Park, Youngmin 23 August 2013 (has links)
No description available.

Page generated in 0.0275 seconds