Spelling suggestions: "subject:"pm2"" "subject:"pkm""
11 |
Different Expression of Placental Pyruvate Kinase M2 in Normal, Preeclamptic, and Intrauterine Growth Restriction PregnanciesBahr, Brigham L. 10 March 2014 (has links) (PDF)
This thesis will be organized into two chapters discussing the placental expression of two proteins, pyruvate kinase M2 (PKM2) and heat shock protein 27 (HSP 27), in human placentas. Understanding the mechanisms of placental metabolism in healthy and diseased placentas helps us understand how placenta disorders occur and how we can treat these disorders. The goal is to investigate these proteins to gain an understanding of their roles in placental disorders and help decrease maternal and fetal mortality rates. Chapter one covers the background of pyruvate kinase M2 (PKM2) in cancer and embryonic tissues, and the expression of PKM2 in the human placenta. Cancer PKM2 has been studied extensively, but little is know about the role of placental PKM2. Expression of PKM2 is confirmed in normal human placenta samples and described in preeclamptic and intrauterine growth restriction (IUGR) affected human placentas. Proteins associated with elevated PKM2 in cancer are also associated with elevated PKM2 in human placentas. Comparing normal and diseased placenta samples helps understand the similarities between cancer PKM2 and placental PKM2. Understanding the mechanisms of placental metabolism and PKM2 expression in the human placenta will clarify how the placenta is affected by preeclampsia and IUGR and the role placental PKM2 plays in each of these diseases. Chapter two will cover a paper that I wrote on the expression of phosphorylated heat shock protein 27 (HSP27) in the human placenta. Heat shock proteins are involved in the stress response and help inhibit apoptosis. The object of the study was to look for correlations between p-HSP27 and apoptosis in human and ovine placenta samples. P-HSP27 was quantified in human placenta samples and in placenta sampled collected from ovine models. Pregnant control and hyperthermic sheep models were used to quantify expression of p-HSP27 across gestation. This study showed similarities between human IUGR and our ovine IUGR model, suggesting a link between decreased p-HSP27 and increased apoptosis in IUGR.
|
12 |
Role of Epidermal Growth Factor Receptor in Tumor Cell MetabolismSankara Narayanan, Nitin January 2014 (has links)
No description available.
|
13 |
Inflammation and Altered Signaling in Obstetric PathologiesTsai, Ya-Fang 12 August 2021 (has links)
The purpose of this research project was to elucidate the molecular interactions and detail the signaling pathways in obstetric pathologies. This work first seeks to understand inflammation related complications relevant to obstetrics. Prior research in our lab identified the implications of the receptor of advanced glycation end products (RAGE) during inflammatory response in the placenta. Current work identified the presence of DNA double-strand breaks (DNA-DSBs) in inflammation associated pregnancy complications of preeclampsia (PE) and preterm labor (PTL) and demonstrated the positive role of RAGE in repairing the damage. The confluent relevance of disrupted mitochondrial function and inflammation has been recognized in the etiology of numerous chronic diseases. Our current studies aim to understand the connections between energy metabolism and inflammation in pathologies of pregnancy complications. Previous research conducted in our laboratory has demonstrated the mediation of the Gas6/Axl pathway on the mechanistic target of rapamycin (mTOR), an important metabolic molecule. We observed the negative regulation of Gas6 treatment on the mTOR pathway and its negative effects on trophoblast cell invasion. In the current study looking at the aspect of energy regulation, we identified the activation of placental mTOR in gestational diabetes mellitus (GDM) and its decrease during PE and intrauterine growth restriction (IUGR). We further evaluated the regulation of mTOR on its downstream effector pyruvate kinase M2 (PKM2). We found that inhibition of mTOR decreased PKM2 activation; while PKM2 activation positively regulated trophoblastic invasion and rescued negative effects observed in our second-hand smoke IUGR murine model. Our work has opened a new direction of placental research, especially in pregnancy complications stemming from genomic instability. We also clarified details of mTOR and PKM2 meditated metabolic signaling that are crucial for future investigation on the dynamic metabolic regulation during pregnancy.
|
14 |
The Role of Hypoxia on Pyruvate Kinase M2, mammalian Target of Rapamycin, Mitochondrial Function, and Cell Invasion in the TrophoblastKimball, Rebecca Lutz 01 March 2016 (has links) (PDF)
This thesis will be organized into two chapters discussing the role of hypoxia in the human placenta. The goal of this thesis is to characterize pyruvate kinase M2, mammalian target of rapamycin, mitochondrial function, and cell invasion in hypoxic conditions in the trophoblast. Understanding the mechanisms of placental metabolism can lead to further treatments for placental diseases. Chapter one covers the background of intrauterine growth restriction, hypoxia, placental metabolism, and pyruvate kinase M2 (PKM2). Little is currently understood about the role of the mitochondria in placental diseases. Expression of PKM2, trophoblast cell invasion, and mitochondrial function is shown to be inhibited by hypoxia. PKM2 inhibition decreases trophoblast cell invasion and nuclear expression of PKM2, but increases mitochondrial function. Studying how hypoxia affects the placenta during placental diseases can help clarify the mechanisms by which these diseases occur. Chapter two further characterizes the background of intrauterine growth restriction and hypoxia. It also covers the background of mammalian target of rapamycin. The objective of this chapter was to assess activated mTOR in the trophoblast in hypoxia. Decreased placental and fetal weights, as well as trophoblast cell invasion were observed in hypoxia. A decrease in the activation of mTOR was also found in the hypoxic placenta. This study could provide insight into the physiological relevance of the pathways and could be targeted to help alleviate placental diseases.
|
Page generated in 0.0461 seconds