• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electron Backscatter Diffraction (EBSD) Analysis and Predicted Physical Properties of Shocked Quartz from the Chicxulub Impact Crater, Mexico

Prastyani, Erina January 2022 (has links)
As one of the most common minerals in crustal rocks, quartz has been widely used as an indicator for shock metamorphism. Shocked quartz is found in the Chicxulub impact crater, an impact crater that has been linked to the Cretaceous-Tertiary extinction ~66 million years ago. The microstructural deformation features found in the shocked quartz do not form randomly, and their orientation provides a better understanding of the impact cratering process. At present, there are no studies of EBSD data analysis of shocked quartz from Chicxulub. We investigated six thin sections from two samples from the M0077A borehole in the lower peak ring of the Chicxulub impact crater, using the Scanning Electron Microscopy (SEM)-EBSD technique. Both samples consist of shocked granite, with a significant amount of quartz.  Therefore, this study investigates the crystallographic preferred orientation (CPO) of shocked quartz and predicts the seismic velocities and anisotropy, based on the EBSD data. We carried out the analysis of EBSD data by using the MATLAB-based MTEX toolbox that can perform CPO analysis from pole figure plots and the prediction of seismic properties of minerals based on the Voigt-Reuss-Hill effective medium method. Although acquiring the EBSD data from these samples is challenging, leading to the lack of data measured, we found out that the prediction of P wave seismic velocity is in good agreement with other recent studies conducted in the same area. The range of predicted P wave velocities is 5.5-6.5 km/s with anisotropy of 8-15%. The actual observed laboratory measurements and in-situ seismic measurements are considerably smaller than this velocity range because our calculations do not incorporate pores or take microcracks into account.  A likely explanation for the large variability of anisotropy in shocked quartz is the relatively few mapped grains with EBSD, which would influence the CPO and lead to high predicted seismic anisotropy. Considering a greaternumber of grains in the CPO analysis, the CPO is reduced, and seismic anisotropy becomes smaller.
2

Impactites from the Hiawatha crater, North-West Greenland

Gustafsson, Jacob January 2020 (has links)
The recent discovery of the 31-km-wide Hiawatha impact crater has raised unanswered questions about its age, impactor and highly unusual organic carbon component. Previous research suggests a fractionated iron meteorite impactor, a probable maximum 3–2.4 Ma impact age and a possible Younger Dryas impact age. The first objective in this study has been to investigate a possible link between the Cape York meteorites and the Hiawatha impact crater by comparing the chromium isotopic signature in chromite from a Cape York meteorite with the chromium isotopic signature in potential chromite from the Hiawatha impactor. The second objective has been to investigate a possible Hiawatha signature in the Younger Dryas deposits from Baffin Bay. The third objective has been to study the organic carbon component in impactites derived from the Hiawatha impact crater. Heavy mineral grains were separated from glaciofluvial sediment which contains Hiawatha impactite grains. Not a single chromite grain was found and the possible link to the Cape York meteorites could not be tested. The petrographic examination of Younger Dryas marine deposits resulted in absence of impact-related Hiawatha grains. A petrological investigation revealed that organic carbon was likely found in five of six variably shocked impactites derived from the Hiawatha impact crater. The character of the organic carbon varies between the samples and also within individual samples. Vitrinite reflectance measurements of the organic carbon in two impactites yielded low reflectance values compared to charcoalification experiments of wood. Organic particles with different reflectance in the same sample suggest that the particles had different impact histories prior to settling and becoming a rock. Diagnostic conifer cellular texture was found in at least one of the samples. The character of the organic particles in the impactites supports the suggestion in a previous study that the sources of the Hiawatha organic carbon component are unmetamorphosed surficial deposits containing dead conifer tree trunks and fine-grained layered clay and organic matter.  In this study it is concluded that the apparent absence of chromite in the examined glaciofluvial sediment sample corroborates the significance of previous research which suggests that the Hiawatha impactor was an iron meteorite. The apparent absence of impact related grains in the Younger Dryas deposits suggests that although a Younger Dryas age for the Hiawatha impact crater is less likely now, the possibility remains open. The organic carbon with diagnostic conifer cellular texture in the Hiawatha impactites corroborates the conclusion in a previous study that the Hiawatha impact-related organic carbon component stems from local, thermally degraded conifer trees with a probable age of ca. 3–2.4 Ma. It is also concluded that the relatively low reflectance values of the organic carbon in the Hiawatha impactites seem to be related to the short duration of the high-temperature excursion during the hypervelocity impact event.

Page generated in 0.0954 seconds