Spelling suggestions: "subject:"planet.""
311 |
Caracterização dinâmica dos sistemas múltiplos de planetas extrassolares / Dynamic characterization of multiple extrasolar planetary systemsOliveira, Victor Hugo da Cunha 11 May 2010 (has links)
O presente trabalho tem por objetivo a caracterização dinâmica dos sistemas múltiplos de planetas extrassolares. O critério de classificação escolhido é baseado na proposta publicada inicialmente em Ferraz-Mello et al. (2005) e posteriormente modicada em Michtchenko et al. (2007). Para a obtenção dos parâmetros planetários orbitais foi feita uma pesquisa em diversos catálogos e artigos disponíveis para posterior criação de um catálogo próprio. Este incluiu somente sistemas extrassolares múlltiplos, ou seja, sistemas que contêm dois ou mais planetas orbitando a estrela. Foram feitas simulações numéricas de estabilidade dinâmica dos sistemas do catálogo próprio com tempos de integração de 200 mil até 21 milhões de anos. Ao todo, foram analisados 37 sistemas múltiplos extrassolares, divididos em 50 subsistemas considerando-se a estrela e dois planetas em órbitas consecutivas. Ao todo, foram analisados 37 sistemas múltiplos extrassolares, divididos em 50 subsistemas considerando-se a estrela e dois planetas em órbitas consecutivas. Estes foram submetidos ao total de 68 simulações computacionais. Os sistemas que apresentaram um cenário de estabilidade dinâmica foram posteriormente separados em três classes: ressonantes, seculares ou hierárquicos. Mais ainda, o comportamento secular desses sistemas foi classificado conforme o movimento do ângulo \"Deltavarpi\" : oscilatório em torno de 0º, oscilatório em torno de 180º ou circulatório. Os resultados das simulações são mostrados para todos os sistemas estudados. / The aim of the present work is a dynamic classification of multiple extrasolar systems. The characterization criterion used is based on a criterion proposed initially in Ferraz-Mello et al. (2005) and modified in Michtchenko et al. (2007). To obtain orbital parameters of the extrasolar systems, a search was done into several available catalogues and the scientific literature. A new catalogue was compiled containing only multiple extrasolar systems, that is, systems with two or more planets in orbit of the host star. Numerical simulations of dynamical stability of the cataloged systems were done considering pairs of planets on the consecutive orbits. Totally, 37 multiple extrasolar systems were analyzed, decomposed in 50 sub-systems each one consisting of the host star and two planets. The time evolution of those were simulated over time spans from 200 thousand years to 21 million years in 68 numerical simulations. The systems which have presented a dynamical stability were subsequently classified in resonants, secular or hierarchical and their secular behavior was classified with respect of the angle \"Deltavarpi\" as oscillation around 0º, oscillation around 180º or circulation. The result of all simulations are presented here for the analyzed systems.
|
312 |
Simulações Numéricas Tri-dimensionais de Ventos Magnetizados de Estrelas de Baixa Massa / Three-Dimensional Numerical Simulations of Magnetized Winds of Low-Mass StarsVidotto, Aline de Almeida 16 November 2009 (has links)
O tópico abordado nesta tese é a perda de massa através de ventos coronais magnetizados em estrelas de baixa massa. Ventos estelares têm sido estudados extensivamente há vários anos, tendo inicialmente como foco o vento solar. Atualmente, sabe-se que o campo magnético é essencial na aceleração e aquecimento dos ventos coronais. Apesar do conhecimento detalhado que temos da estrutura magnética do Sol, pouco se sabe sobre a configuração do campo magnético em outras estrelas. Nesta tese, é investigada a estrutura do campo magnético nas coroas de estrelas do tipo solar na Seqüência Principal e de suas predecessoras na pré Seqüência Principal através de simulações numéricas magneto-hidrodinâmicas tri-dimensionais. Aqui, consideramos de forma auto-consistente a interação entre o vento e o campo magnético e vice-versa. Dessa forma, pela interação entre forças magnéticas e forças do vento, consegue-se determinar a configuração do campo magnético e a estrutura dos ventos coronais. Realizamos um estudo de ventos de estrelas do tipo solar e a dependência dos mesmos com o parâmetro beta do plasma (a razão entre as densidades de energia térmica e magnética). Este é o primeiro estudo a realizar tal análise resolvendo as equações tri-dimensionais da magneto-hidrodinâmica ideal. Em nossas simulações, adotamos um parâmetro de aquecimento descrito por gamma, que é responsável pela aceleração térmica do vento. Então, nós analisamos ventos com intensidades de campo magnético nos pólos no intervalo de B0 = 1 a 20 G e mostramos que a estrutura do vento apresenta características que são similares à do vento coronal do Sol. No estado estacionário, a topologia do campo magnético obtida é similar para todos os casos estudados, apresentando uma configuração do tipo helmet streamer, com zonas de linhas fechadas e abertas de campo magnético co-existindo. Intensidades mais altas de campo levam a ventos mais acelerados e mais quentes. O aumento na intensidade do campo gera também uma zona morta maior no vento, i.e., os loops fechados que previnem que a matéria escape da coroa em latitudes menores que ~45 graus se estendem a maiores distâncias da estrela. Além disso, mostramos também que a força de Lorentz gera naturalmente um vento que é dependente da latitude. Ao aumentar a densidade da coroa mantendo B0 = 20 G, mostramos que o sistema volta a apresentar ventos menos acelerados e mais frios. Para um valor fixo de gamma, mostramos que o parâmetro essencial na determinação do perfil de velocidade do vento é o parâmetro beta calculado na base da coroa. Dessa forma, acredita-se que haja um grupo de ventos magnetizados que apresenta a mesma velocidade terminal independentemente das densidades de energia térmica ou magnética, desde que o parâmetro beta seja o mesmo. No entanto, essa degenerescência pode ser removida ao se comparar outros parâmetros físicos do vento, tal como a taxa de perda de massa. Nós também analisamos a influência do gamma nos nossos resultados e mostramos que ele é importante na determinação da estrutura do vento. Além disso, investigamos ventos magnetizados de estrelas de baixa massa da pré Seqüência Principal. Em particular, analisamos sob quais circunstâncias tais estrelas apresentam estruturas magnéticas alongadas (e.g., helmet streamers, proeminências do tipo slingshot, etc). Focamos especialmente em estrelas do tipo T Tauri fracas, uma vez que o tênue disco de acreção, quando presente ao redor de tais estrelas, não deve causar forte influência na estrutura do vento estelar e nem na do campo magnético coronal. Nós mostramos que o parâmetro beta do plasma é um fator decisivo na configuração do campo magnético do vento estelar. Usando parâmetros iniciais adequados ao que se é observado para tais estrelas, nós mostramos que a configuração do campo magnético pode variar entre uma configuração semelhante à de um dipolo e uma configuração com linhas fortemente colimadas em torno do eixo polar e streamers fechados ao redor do equador (configuração de multi-componentes para o campo magnético). Mostramos que as estruturas alongadas do campo magnético somente estão presentes se o parâmetro beta do plasma na base da coroa é beta0 << 1. Usando nossos modelos magneto-hidrodinâmicos, auto-consistentes, tri-dimensionais, estimamos para ventos de estrelas da pré Seqüência Principal a escala temporal de migração planetária devido a forças de arraste exercidas pelo vento em um planeta tipo hot-Jupiter (i.e., um planeta gigante que orbita muito próximo da estrela). Nosso modelo sugere que os ventos estelares de coroas com multi-componentes de campo magnético não têm influências significativas na migração de hot-Jupiters. / The subject of this thesis is the mass loss of low-mass stars through magnetized coronal winds. Stellar winds have been a topic of extensive research in Astrophysics for a long time, and their first investigations focused on the solar wind. Nowadays, we know that the magnetic field plays a crucial role in the acceleration and heating of coronal winds. Despite of the knowledge of the fine structure of the solar magnetic field, much less information is known regarding the configuration of the magnetic field in other stars. In this thesis, we investigate the structure of the magnetic field in the coronae of solar-like stars and young stars by means of three-dimensional magnetohydrodynamical numerical simulations. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. We investigate solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional magnetohydrodynamics equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from B0 = 1 to 20 G and we show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger ``dead zone\'\' in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B0 = 20 G, the system recovers to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We also analyze the influence of gamma in our results and we show that it is also important in determining the wind structure. We further investigate magnetized stellar winds of low-mass pre-main-sequence stars. In particular we analyze under which circumstances these stars present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind neither on the coronal magnetic field. We show that the plasma-beta parameter is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta0 << 1. Using our self-consistent three-dimensional magnetohydrodynamical model, we estimate for the stellar winds of pre-main-sequence stars the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter (i.e., on a giant planet that orbits very close to the star). Our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on the migration of hot-Jupiters.
|
313 |
Glass rain : modelling the formation, dynamics and radiative-transport of cloud particles in hot Jupiter exoplanet atmospheresLee, Graham Kim Huat January 2017 (has links)
The atmospheres of exoplanets are being characterised in increasing detail by observational facilities and will be examined with even greater clarity with upcoming space based missions such as the James Webb Space Telescope (JWST) and the Wide Field InfraRed Survey Telescope (WFIRST). A major component of exoplanet atmospheres is the presence of cloud particles which produce characteristic observational signatures in transit spectra and influence the geometric albedo of exoplanets. Despite a decade of observational evidence, the formation, dynamics and radiative-transport of exoplanet atmospheric cloud particles remains an open question in the exoplanet community. In this thesis, we investigate the kinetic chemistry of cloud formation in hot Jupiter exoplanets, their effect on the atmospheric dynamics and observable properties. We use a static 1D cloud formation code to investigate the cloud formation properties of the hot Jupiter HD 189733b. We couple a time-dependent kinetic cloud formation to a 3D radiative-hydrodynamic simulation of the atmosphere of HD 189733b and investigate the dynamical properties of cloud particles in the atmosphere. We develop a 3D multiple-scattering Monte Carlo radiative-transfer code to post-process the results of the cloudy HD 189733b RHD simulation and compare the results to observational results. We find that the cloud structures of the hot Jupiter HD 189733b are likely to be highly inhomogeneous, with differences in cloud particle sizes, number density and composition with longitude, latitude and depth. Cloud structures are most divergent between the dayside and nightside faces of the planet due to the instability of silicate materials on the hotter dayside. We find that the HD 189733b simulation in post-processing is consistent with geometric albedo observations of the planet. Due to the scattering properties of the cloud particles we predict that HD 189733b will be brighter in the upcoming space missions CHaracterising ExOPlanet Satellite (CHEOPS) bandpass compared to the Transiting Exoplanet Space Survey (TESS) bandpass.
|
314 |
Exocomets at large orbital radii and their inward transport in debris discsMarino Estay, Sebastián January 2018 (has links)
Planetary systems are not only composed of planets, but also of km-sized rocky and icy bodies that are confined within belts similar to the Asteroid and Kuiper belt in the Solar System. Mutual collisions within these belts grind down solids producing dust and giving rise to debris discs. Primitive asteroids and comets likely played a major role in the emergence of life on Earth through their delivery of volatiles early in the lifetime of our planet. Cometary impacts, therefore, could be a necessary condition for the emergence of life in exoplanets and the study of debris discs essential to determine the ubiquity of such phenomenon. Moreover, exocometary discs provide a unique window into the origins and outer regions of planetary systems as comets do within our Solar System. Initially, in Chapter 1 I present an overview of the study of exoplanetary systems, focusing on debris discs. I discuss the basics of planet formation, its connection with debris discs, and how these evolve and interact with planets. I also describe how we observe these discs and probe their volatile component that is locked inside exocomets, and some evidence supporting the idea of exocomets venturing into the inner regions of planetary systems. Then, in Chapters 2, 3, 4 and 5 I present new ALMA observations of the systems HD 181327, η Corvi, the multiplanet system 61 Vir and HD 107146, which host debris discs. In the first two, I highlight the derivation of the density structure of their discs and the detection of volatiles being released by exocomets; while in the third and fourth I compare the observations with simulations, which I use to set constraints on the underlying planetesimal distribution and mass and orbital distance of unseen planets. Finally, in Chapter 6 I present result obtained from N-body simulations to study the process of inward transport of comets by a multiplanetary system and how these can deliver material to inner planets and explain the frequently observed exozodiacal dust. To conclude, in Chapter 7 I summarise the results and conclusions of this dissertation and discuss ongoing and future work.
|
315 |
Detection of exozodiacal dust: a step toward Earth-like planet characterization with infrared interferometryDefrere, Denis 07 December 2009 (has links)
The existence of other habitable worlds and the possible development of life elsewhere in the Universe
have been among mankinds fundamental questions for thousands of years. These interrogations about
our origins and place in the Universe are today at the dawn of being answered in scientific terms. The
key year was 1995 with the discovery of the first extrasolar planet orbiting around a solar-type star.
About 400 extrasolar planets are known today and the possibility to identify habitable worlds and even
life among them largely contributes to the growing interest about their nature and properties. However,
characterizing planetary systems is a very difficult task due to both the huge contrast and the small
angular separation between the host stars and their environment. New techniques have emerged during
the past decades with the purpose of tackling these fantastic observational challenges. In that context,
infrared interferometry is a very promising technique, since it provides the required angular resolution to
separate the emission of the star from that of its environment.
This dissertation is devoted to the characterization of extrasolar planetary systems using the high
angular resolution and dynamic range capabilities of infrared interferometric techniques. The first part
of the present work is devoted to the detection with current interferometric facilities of warm dust within
the first few astronomical units of massive debris discs around nearby stars. In order to extend the
imaging of planetary systems to fainter discs and to extrasolar planets, we investigate in a second step
the performance of future space-based nulling interferometers and make a comparison with ground-based
projects. Finally, the third part of this work is dedicated to the impact of exozodiacal discs on the
performance of future life-searching space missions, the goal being to characterize extrasolar planets with
sizes down to that of the Earth.
|
316 |
Preliminary design of spacecraft trajectories for missions to outer planets and small bodiesLantukh, Demyan Vasilyevich 17 September 2015 (has links)
Multiple gravity assist (MGA) spacecraft trajectories can be difficult to find, an intractable problem to solve completely. However, these trajectories have enormous benefits for missions to challenging destinations such as outer planets and primitive bodies. Techniques are presented to aid in solving this problem with a global search tool and additional investigation into one particular proximity operations option is discussed. Explore is a global grid-search MGA trajectory pathsolving tool. An efficient sequential tree search eliminates v∞ discontinuities and prunes trajectories. Performance indices may be applied to further prune the search, with multiple objectives handled by allowing these indices to change between trajectory segments and by pruning with a Pareto-optimality ranking. The MGA search is extended to include deep space maneuvers (DSM), v∞ leveraging transfers (VILT) and low-thrust (LT) transfers. In addition, rendezvous or nπ sequences can patch the transfers together, enabling automatic augmentation of the MGA sequence. Details of VILT segments and nπ sequences are presented: A boundaryvalue problem (BVP) VILT formulation using a one-dimensional root-solve enables inclusion of an efficient class of maneuvers with runtime comparable to solving ballistic transfers. Importantly, the BVP VILT also allows the calculation of velocity-aligned apsidal maneuvers (VAM), including inter-body transfers and orbit insertion maneuvers. A method for automated inclusion of nπ transfers such as resonant returns and back-flip trajectories is introduced: a BVP is posed on the v∞ sphere and solved with one or more nπ transfers – which may additionally fulfill specified science objectives. The nπ sequence BVP is implemented within the broader search, combining nπ and other transfers in the same trajectory. To aid proximity operations around small bodies, analytical methods are used to investigate stability regions in the presence of significant solar radiation pressure (SRP) and body oblateness perturbations. The interactions of these perturbations allow for heliotropic orbits, a stable family of low-altitude orbits investigated in detail. A novel constrained double-averaging technique analytically determines inclined heliotropic orbits. This type of knowledge is uniquely valuable for small body missions where SRP and irregular body shape are very important and where target selection is often a part of the mission design.
|
317 |
The dramatic role of astronomy in early modern dramaCoston, Micah Keith January 2017 (has links)
By examining five types of astronomical and celestial phenomenaâcomets, constellations, the zodiac, planets, and the music of the spheresâthis thesis posits not only that early modern dramatists were influenced by established and emerging natural philosophy as habits of thought that manifested in their writing, but also that astronomical phenomena operate within the drama, performance, and in the theatre as elements for creating and developing a distinctly spatial dramaturgy. Using theories from the spatial turn, this thesis maps the positions, edges, disturbances, and motions of celestial properties within the imaginary and physical space of early modern drama and theatre. It argues that the case study plays examined within this thesis demonstrate a period-wide engagement, rather than an authorial-, company-, theatre-, or even genre-specific practice. Dramatists developed techniques using astronomical phenomena as dramatic methods that occasionally underscored early modern astronomical thought. However, in many cases constructed plots, characters, visual and sound effects, and movements transgressed astronomical expectations. Dramatists broke down constellations, inserted new stars in the heavens, created zodiacal females, launched pyrotechnical comets, moved planets unexpectedly across the stage, and played (and refrained from playing) celestial "music" for the audience. Recognising composite and often contradictory astronomical constructions within the drama, this thesis moves the critical discussion away from an intellectual history of natural philosophy and gravitates toward an active astronomical dramaturgy.
|
318 |
Propriedades f?sicas de planetas extrasolaresNascimento, Sanzia Alves do 22 April 2008 (has links)
Made available in DSpace on 2015-03-03T15:15:22Z (GMT). No. of bitstreams: 1
SanziaAN.pdf: 964619 bytes, checksum: 25b161330259b5777dcaa8cf03c1242b (MD5)
Previous issue date: 2008-04-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular
momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties
of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate
and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show
that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period
also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation / ROTA??O ? um dos importantes aspectos a ser observado na astrof?sica estelar. Por isto, neste trabalho, investigamos este par?metro no estudo das estrelas hospedeiras de planetas. Par?metro f?sico este que fornece informa??o sobre a distribui??o do momentum angular dos sistemas planet?rios, bem como sobre o seu papel nos mais diferentes fen?menos, incluindo emiss?o cromosf?rica e coronal e sobre aqueles decorrentes de efeitos de mar?. Apesar dos cont?nuos avan?os feitos no estudo das caracter?sticas e das propriedades destes objetos, as principais caracter?sticas de seu comportamento rotat?rio ainda n?o est?o bem estabelecidas. Neste contexto, o presente trabalho traz um estudo pioneiro sobre a rota??o e o momentum angular das estrelas hospedeiras de planetas, bem como sobre a correla??o entre rota??o e par?metros f?sicos estelares e planet?rios. Nossa an?lise ? baseada em uma amostra de 232 planetas extrasolares, orbitando 196 estrelas de diferentes classes de luminosidade e tipos espectrais. Al?m do estudo do comportamento rotacional dessas estrelas, re-visitamos o comportamento das propriedades f?sicas destas estrelas e de seus planetas, incluindo a massa estelar e
a metalicidade, bem como os par?metros orbitais planet?rios. Como resultados principais, podemos sublinhar que a rota??o das estrelas com planetas apresenta duas claras caracter?sticas: estrelas com Tef inferiores aproximadamente 6000 K possuem rota??es mais baixas, enquanto que entre aquelas com Tef > 6000 K encontramos rota??es modv eradas e altas, embora algumas exce??es. N?s mostramos tamb?m que as estrelas com planetas seguem, em sua maioria, a lei do Kraft, a saber < J > / v rot. Nesta mesma linha n?s mostramos que a rela??o rota??o versus idade das estrelas com planetas segue, ao menos qualitativamente, como qualquer outra estrela de campo ou de aglomerado, a lei de Skumanich e de Pace & Pasquini. Um resultado interessante a ser destacado ? a rela??o rota??o versus per?odo orbital, que aponta para uma tend?ncia de que as estrelas que abrigam planetas com per?odo orbital menores apresentam rota??es mais real?adas
|
319 |
Simulações Numéricas Tri-dimensionais de Ventos Magnetizados de Estrelas de Baixa Massa / Three-Dimensional Numerical Simulations of Magnetized Winds of Low-Mass StarsAline de Almeida Vidotto 16 November 2009 (has links)
O tópico abordado nesta tese é a perda de massa através de ventos coronais magnetizados em estrelas de baixa massa. Ventos estelares têm sido estudados extensivamente há vários anos, tendo inicialmente como foco o vento solar. Atualmente, sabe-se que o campo magnético é essencial na aceleração e aquecimento dos ventos coronais. Apesar do conhecimento detalhado que temos da estrutura magnética do Sol, pouco se sabe sobre a configuração do campo magnético em outras estrelas. Nesta tese, é investigada a estrutura do campo magnético nas coroas de estrelas do tipo solar na Seqüência Principal e de suas predecessoras na pré Seqüência Principal através de simulações numéricas magneto-hidrodinâmicas tri-dimensionais. Aqui, consideramos de forma auto-consistente a interação entre o vento e o campo magnético e vice-versa. Dessa forma, pela interação entre forças magnéticas e forças do vento, consegue-se determinar a configuração do campo magnético e a estrutura dos ventos coronais. Realizamos um estudo de ventos de estrelas do tipo solar e a dependência dos mesmos com o parâmetro beta do plasma (a razão entre as densidades de energia térmica e magnética). Este é o primeiro estudo a realizar tal análise resolvendo as equações tri-dimensionais da magneto-hidrodinâmica ideal. Em nossas simulações, adotamos um parâmetro de aquecimento descrito por gamma, que é responsável pela aceleração térmica do vento. Então, nós analisamos ventos com intensidades de campo magnético nos pólos no intervalo de B0 = 1 a 20 G e mostramos que a estrutura do vento apresenta características que são similares à do vento coronal do Sol. No estado estacionário, a topologia do campo magnético obtida é similar para todos os casos estudados, apresentando uma configuração do tipo helmet streamer, com zonas de linhas fechadas e abertas de campo magnético co-existindo. Intensidades mais altas de campo levam a ventos mais acelerados e mais quentes. O aumento na intensidade do campo gera também uma zona morta maior no vento, i.e., os loops fechados que previnem que a matéria escape da coroa em latitudes menores que ~45 graus se estendem a maiores distâncias da estrela. Além disso, mostramos também que a força de Lorentz gera naturalmente um vento que é dependente da latitude. Ao aumentar a densidade da coroa mantendo B0 = 20 G, mostramos que o sistema volta a apresentar ventos menos acelerados e mais frios. Para um valor fixo de gamma, mostramos que o parâmetro essencial na determinação do perfil de velocidade do vento é o parâmetro beta calculado na base da coroa. Dessa forma, acredita-se que haja um grupo de ventos magnetizados que apresenta a mesma velocidade terminal independentemente das densidades de energia térmica ou magnética, desde que o parâmetro beta seja o mesmo. No entanto, essa degenerescência pode ser removida ao se comparar outros parâmetros físicos do vento, tal como a taxa de perda de massa. Nós também analisamos a influência do gamma nos nossos resultados e mostramos que ele é importante na determinação da estrutura do vento. Além disso, investigamos ventos magnetizados de estrelas de baixa massa da pré Seqüência Principal. Em particular, analisamos sob quais circunstâncias tais estrelas apresentam estruturas magnéticas alongadas (e.g., helmet streamers, proeminências do tipo slingshot, etc). Focamos especialmente em estrelas do tipo T Tauri fracas, uma vez que o tênue disco de acreção, quando presente ao redor de tais estrelas, não deve causar forte influência na estrutura do vento estelar e nem na do campo magnético coronal. Nós mostramos que o parâmetro beta do plasma é um fator decisivo na configuração do campo magnético do vento estelar. Usando parâmetros iniciais adequados ao que se é observado para tais estrelas, nós mostramos que a configuração do campo magnético pode variar entre uma configuração semelhante à de um dipolo e uma configuração com linhas fortemente colimadas em torno do eixo polar e streamers fechados ao redor do equador (configuração de multi-componentes para o campo magnético). Mostramos que as estruturas alongadas do campo magnético somente estão presentes se o parâmetro beta do plasma na base da coroa é beta0 << 1. Usando nossos modelos magneto-hidrodinâmicos, auto-consistentes, tri-dimensionais, estimamos para ventos de estrelas da pré Seqüência Principal a escala temporal de migração planetária devido a forças de arraste exercidas pelo vento em um planeta tipo hot-Jupiter (i.e., um planeta gigante que orbita muito próximo da estrela). Nosso modelo sugere que os ventos estelares de coroas com multi-componentes de campo magnético não têm influências significativas na migração de hot-Jupiters. / The subject of this thesis is the mass loss of low-mass stars through magnetized coronal winds. Stellar winds have been a topic of extensive research in Astrophysics for a long time, and their first investigations focused on the solar wind. Nowadays, we know that the magnetic field plays a crucial role in the acceleration and heating of coronal winds. Despite of the knowledge of the fine structure of the solar magnetic field, much less information is known regarding the configuration of the magnetic field in other stars. In this thesis, we investigate the structure of the magnetic field in the coronae of solar-like stars and young stars by means of three-dimensional magnetohydrodynamical numerical simulations. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. We investigate solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional magnetohydrodynamics equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from B0 = 1 to 20 G and we show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger ``dead zone\'\' in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B0 = 20 G, the system recovers to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We also analyze the influence of gamma in our results and we show that it is also important in determining the wind structure. We further investigate magnetized stellar winds of low-mass pre-main-sequence stars. In particular we analyze under which circumstances these stars present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind neither on the coronal magnetic field. We show that the plasma-beta parameter is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta0 << 1. Using our self-consistent three-dimensional magnetohydrodynamical model, we estimate for the stellar winds of pre-main-sequence stars the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter (i.e., on a giant planet that orbits very close to the star). Our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on the migration of hot-Jupiters.
|
320 |
Caracterização dinâmica dos sistemas múltiplos de planetas extrassolares / Dynamic characterization of multiple extrasolar planetary systemsVictor Hugo da Cunha Oliveira 11 May 2010 (has links)
O presente trabalho tem por objetivo a caracterização dinâmica dos sistemas múltiplos de planetas extrassolares. O critério de classificação escolhido é baseado na proposta publicada inicialmente em Ferraz-Mello et al. (2005) e posteriormente modicada em Michtchenko et al. (2007). Para a obtenção dos parâmetros planetários orbitais foi feita uma pesquisa em diversos catálogos e artigos disponíveis para posterior criação de um catálogo próprio. Este incluiu somente sistemas extrassolares múlltiplos, ou seja, sistemas que contêm dois ou mais planetas orbitando a estrela. Foram feitas simulações numéricas de estabilidade dinâmica dos sistemas do catálogo próprio com tempos de integração de 200 mil até 21 milhões de anos. Ao todo, foram analisados 37 sistemas múltiplos extrassolares, divididos em 50 subsistemas considerando-se a estrela e dois planetas em órbitas consecutivas. Ao todo, foram analisados 37 sistemas múltiplos extrassolares, divididos em 50 subsistemas considerando-se a estrela e dois planetas em órbitas consecutivas. Estes foram submetidos ao total de 68 simulações computacionais. Os sistemas que apresentaram um cenário de estabilidade dinâmica foram posteriormente separados em três classes: ressonantes, seculares ou hierárquicos. Mais ainda, o comportamento secular desses sistemas foi classificado conforme o movimento do ângulo \"Deltavarpi\" : oscilatório em torno de 0º, oscilatório em torno de 180º ou circulatório. Os resultados das simulações são mostrados para todos os sistemas estudados. / The aim of the present work is a dynamic classification of multiple extrasolar systems. The characterization criterion used is based on a criterion proposed initially in Ferraz-Mello et al. (2005) and modified in Michtchenko et al. (2007). To obtain orbital parameters of the extrasolar systems, a search was done into several available catalogues and the scientific literature. A new catalogue was compiled containing only multiple extrasolar systems, that is, systems with two or more planets in orbit of the host star. Numerical simulations of dynamical stability of the cataloged systems were done considering pairs of planets on the consecutive orbits. Totally, 37 multiple extrasolar systems were analyzed, decomposed in 50 sub-systems each one consisting of the host star and two planets. The time evolution of those were simulated over time spans from 200 thousand years to 21 million years in 68 numerical simulations. The systems which have presented a dynamical stability were subsequently classified in resonants, secular or hierarchical and their secular behavior was classified with respect of the angle \"Deltavarpi\" as oscillation around 0º, oscillation around 180º or circulation. The result of all simulations are presented here for the analyzed systems.
|
Page generated in 0.0865 seconds