• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 31
  • 31
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 8
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 328
  • 75
  • 48
  • 36
  • 35
  • 33
  • 28
  • 25
  • 24
  • 23
  • 21
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Control of marine plankton respiration : High temperature sensitivity at low temperatures influenced by substrate availability

Amundsson, Katharina January 2016 (has links)
Temperature dependence of marine plankton respiration is an important factor in understanding the function and changes in the ecosystem of the ocean. The aim of this study is to test the temperature sensitivity (Q10) of plankton respiration. The oxygen optode method was used to measure plankton respiration. Natural water samples from the Baltic Sea was incubated at short (in situ +1, +2, +3°C) and long (in situ +5, +10, +20°C) temperature intervals with influence of dissolved organic matter (DOC). The Arrhenius equation and Q10-model was used to determine the temperature dependence (Q10) of respiration at different temperatures. There was a significant difference in Q10 between short temperature intervals at low temperatures (p=0,008) and long temperature intervals at higher temperatures. There was no significant difference between long and short temperature intervals when DOC was added (p=0,094). A significant effect could be seen with the DOC enrichment at low temperatures, where the Q10-values became significantly lower (p=0,002) after DOC addition. This effect could, however, not be seen at higher temperatures (p=0,117). Together with results from earlier studies it was concluded that the difference in temperature depends on the actual temperature and not the length of the interval. Lowered temperature dependence at raised DOC concentration, was the opposite of what was expected. The results suggest that the importance of temperature for CO2 emissions and development of hypoxia in the sea may have been underestimated.
162

Interactive effects of ocean acidification with other environmental drivers on marine plankton

Bausch, Alexandra Renee January 2018 (has links)
Planktonic organisms form the base of the marine food web and may be impacted by environmental change in many ways. The interactive effects of multiple, simultaneous climate-driven changes on these organisms are not well understood. This dissertation examined the impacts of ocean acidification in combination with other environmental stressors on marine plankton and determined spatial patterns of one of these potential interactive drivers. Chapter 2 investigated the synergistic effects of ocean acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae. Findings indicated that empirical studies may be crucial to accurately predict organismal responses to multi-stressors. Results also suggested that photorespiration may serve a previously unrecognized role in dinoflagellate metabolism. Chapter 3 examined the combined effects of ocean acidification and lithogenic trace metals on the growth of another harmful dinoflagellate, Cochlodinium polykrikoides. Results indicated that high suspended sediment loads may deliver toxic concentrations of trace elements to marine phytoplankton in acidified coastal ecosystems. Chapter 4 examined the interactive effects of ocean acidification and bacteria on the severity and extent of dissolution in the shells of larval gastropods and the adult pteropod Limacina helicina. Research findings indicated that microbial communities on the shell surfaces of some planktonic molluscs may mediate certain types of shell dissolution in acidified, upwelled waters. Chapter 5 explored the use of thorium isotope fluxes as a proxy for dust and lithogenic iron in the Indian Ocean. Results suggested that the gradient of dust fluxes in the region could impose thresholds for biological productivity. Together, these interdisciplinary studies demonstrate coupled biological and chemical changes in marine ecosystems as a result of increased anthropogenic environmental change.
163

A shape-based image classification and identification system for digital holograms of marine particles and plankton

Liu, Zonghua January 2018 (has links)
The objective of this project is to develop a shape-based image analysis system, which allows classification and identification of holographic images of marine particles and plankton recorded by an underwater digital holographic camera. In order to achieve this goal, the first step is to extract shape regions of objects from images and to describe the regions by polygonal boundaries. After extraction of the polygonal boundary curve of an object, affine-invariant curve normalisation is implemented on the curve to reduce the influence of object shape deformations on object identification and classification. Six numeric features are then selected to describe shape properties of an object. Before these six shape features are used as a numeric interpretation of an object for image analysis, some processing of them is necessary, consisting of selecting the number of items in each feature and rescaling the selected feature vectors. Afterwards, Gaussian rescaling is adopted to rescale the feature data. Lastly, a shape-based image classification and identification system is built. The system contains two components: semi-automatic image classification (imCLASS) and automatic image identification (imIDENT). In imCLASS, an image retrieval method based on the support vector machine with a feedback mechanism has been developed. The function of imCLASS is to classify given images into different folders with the corresponding labels from the user. These labelled folders can be used to train the artificial neural network in imIDENT. A set of analyses of effects of the proposed methods in the process chain on image analysis are carried out. The whole performance of the system for classifying and identifying marine particles and plankton is also evaluated in terms of the time-cost and accuracy performance. In the end, some main conclusions are listed. The areas of weakness of the system are also highlighted for future work.
164

The size dependence of radiophosphorus bioaccumulation in the freshwater plankton /

Vézina, Alain January 1984 (has links)
No description available.
165

The size distribution of the limnoplankton /

Ahrens, M. (Martin) January 1989 (has links)
No description available.
166

Predator regulation of sedimentary fauna in a sub-Arctic fjord ecosystem / y Pedro Armando Quijón.

Quijón, Pedro Armando, January 2004 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2005. / Includes bibliographical references.
167

An analysis of Sargasso Sea bacterioplankton diversity using 16S ribosomal RNA

Britschgi, Theresa Baden 28 June 1990 (has links)
The objective of this project was to use ribosomal RNA genes, cloned from natural populations of Sargasso Sea bacterioplankton, as markers for picoplankton diversity. It is widely recognised that a majority of microorganisms have yet to be cultivated, and therefore much of extant microbial diversity remains unknown (50). The method described here for analyzing natural bacterial communities circumvents this problem by utilizing ribosomal RNA, found in all life forms, for defining and enumerating the components of natural populations. Two different clone libraries of eubacterial 16S rRNA genes amplified from a natural population of Sargasso Sea picoplankton by the polymerase chain reaction (11) have been phylogenetically analysed. The analyses indicate the presence of a wide variety of novel microorganisms, representing members of the α and γ proteobacteria and the oxyphototroph (13, 47) eubacterial phyla. One group of novel clones, represented by SAR 83, were found to be most closely related to Erythrobacter, a genus of aerobic bacteriochlorophyll~ containing organisms. The results imply that many closely related 16S rRNA lineages, or clusters of lineages, coexist within bacterioplankton communities. The significance of these clusters is uncertain. One interpretation, that they represent clonal structure within bacterial species, suggests that populations of marine bacteria are very ancient. / Graduation date: 1991
168

Characterization of novel pathways in the phosphorus cycle of lakes

Sereda, Jeffrey Michael 15 April 2011
Phosphorus (P) is a limiting nutrient regulating productivity in both freshwater and marine ecosystems. A full knowledge of the sources and pathways of the P cycle is essential for understanding aquatic ecosystem function and for managing eutrophication. However, two significant pathways are poorly understood or remain uncharacterized. First, aquatic metazoans represent a significant internal regenerative pathway of P through the mineralization, translocation (i.e., benthic pelagic coupling) and excretion of nutrients. Rates of P excreted are expected to vary across taxa (i.e., zooplankton vs. mussels vs. benthic macroinvertebrates vs. fish), yet the significance of any one group of taxa in supplying P to bacteria and algae is unknown. Therefore, I developed the first comprehensive set of empirical models of nutrient release for aquatic metazoans (zooplankton, mussels, other benthic macroinvertebrates, and detritivorous and non-detritivorous fish) and compared inter-taxonomic differences in P excretion. I demonstrated that detritivorous fish excrete P at rates greater than all other taxa (as a function of individual organism mass); whereas, mussels generally excreted P at rates less than other taxa. Significant differences in the rate of P excretion between zooplankton and non-detritivorous fish were not observed [i.e., the allometry of P excretion was similar between zooplankton and non-detritivorous fish (as a function of individual body mass)]. I subsequently applied the models to assemblage biomass and abundance data to examine and compare the relative contribution of each taxa to the internal supply of P, and to examine the turnover time of P bound in metazoan biomass. I clearly demonstrated a hierarchy in the contribution by different metazoan assemblages to P cycling (zooplankton > benthic macroinvertebrates > mussels > fish) and clarified the significance of different metazoan taxa in P cycling. Moreover, I demonstrated that the slow turnover time of P bound in fish biomass (relative to other metazoans) indicates that fish are important as sinks rather than sources of P. A second potentially significant P pathway is through the influence of ultraviolet radiation (UVR) on P cycling. UVR may alter P cycling abiotically through changes in P availability and biotically through changes in the acquisition and regeneration of dissolved P by plankton. However, the significance of P released from the photodecomposition of dissolved organic P compounds (DOP), and the effect of UVR on the uptake and regeneration of dissolved P, the turnover of particulate P, and on ambient phosphate (PO43-) concentration has not been investigated and remains unknown. Therefore, my initial experiments applied the novel use of radiophosphate uptake assays to quantify the significance of the photodecomposition of DOP to PO43-. I concluded that the liberation of PO43- through the photodecomposition of DOP is not a significant pathway. However, the photochemical liberation of PO43- from suspended sediments was evident and should be an important pathway supplying PO43- to plankton in shallow polymictic lakes. This represents the first study to identify this P pathway in lakes. The turnover time of the PO43- pool increased under UVR irradiance (i.e., uptake of P by plankton decreased), while the regeneration rate of dissolved P and turnover rate of planktonic P were generally not affected. The net effect of UVR was an increase in steady state PO43- concentration (ssPO43-). Alkaline phosphatase activity (APA) in the dissolved and particulate fractions was significantly reduced in UVR treatments, but unrelated to changes in P uptake as proposed in the literature. This is the first study to comprehensively investigate the biotic effects of UVR on P cycling and represents a major advancement in the field of photobiology. In summary, I have characterized several poorly understood pathways in the P cycle of lakes. With the models I have developed, aquatic metazoans can now be integrated into the P cycle of lakes, for example, with other internal and external sources of P (e.g., from inlets, lake sediments and the atmosphere). This will advance our knowledge of P cycling, and will provide researchers with a better understanding of the nutrient pathways supporting primary production.
169

Characterization of novel pathways in the phosphorus cycle of lakes

Sereda, Jeffrey Michael 15 April 2011 (has links)
Phosphorus (P) is a limiting nutrient regulating productivity in both freshwater and marine ecosystems. A full knowledge of the sources and pathways of the P cycle is essential for understanding aquatic ecosystem function and for managing eutrophication. However, two significant pathways are poorly understood or remain uncharacterized. First, aquatic metazoans represent a significant internal regenerative pathway of P through the mineralization, translocation (i.e., benthic pelagic coupling) and excretion of nutrients. Rates of P excreted are expected to vary across taxa (i.e., zooplankton vs. mussels vs. benthic macroinvertebrates vs. fish), yet the significance of any one group of taxa in supplying P to bacteria and algae is unknown. Therefore, I developed the first comprehensive set of empirical models of nutrient release for aquatic metazoans (zooplankton, mussels, other benthic macroinvertebrates, and detritivorous and non-detritivorous fish) and compared inter-taxonomic differences in P excretion. I demonstrated that detritivorous fish excrete P at rates greater than all other taxa (as a function of individual organism mass); whereas, mussels generally excreted P at rates less than other taxa. Significant differences in the rate of P excretion between zooplankton and non-detritivorous fish were not observed [i.e., the allometry of P excretion was similar between zooplankton and non-detritivorous fish (as a function of individual body mass)]. I subsequently applied the models to assemblage biomass and abundance data to examine and compare the relative contribution of each taxa to the internal supply of P, and to examine the turnover time of P bound in metazoan biomass. I clearly demonstrated a hierarchy in the contribution by different metazoan assemblages to P cycling (zooplankton > benthic macroinvertebrates > mussels > fish) and clarified the significance of different metazoan taxa in P cycling. Moreover, I demonstrated that the slow turnover time of P bound in fish biomass (relative to other metazoans) indicates that fish are important as sinks rather than sources of P. A second potentially significant P pathway is through the influence of ultraviolet radiation (UVR) on P cycling. UVR may alter P cycling abiotically through changes in P availability and biotically through changes in the acquisition and regeneration of dissolved P by plankton. However, the significance of P released from the photodecomposition of dissolved organic P compounds (DOP), and the effect of UVR on the uptake and regeneration of dissolved P, the turnover of particulate P, and on ambient phosphate (PO43-) concentration has not been investigated and remains unknown. Therefore, my initial experiments applied the novel use of radiophosphate uptake assays to quantify the significance of the photodecomposition of DOP to PO43-. I concluded that the liberation of PO43- through the photodecomposition of DOP is not a significant pathway. However, the photochemical liberation of PO43- from suspended sediments was evident and should be an important pathway supplying PO43- to plankton in shallow polymictic lakes. This represents the first study to identify this P pathway in lakes. The turnover time of the PO43- pool increased under UVR irradiance (i.e., uptake of P by plankton decreased), while the regeneration rate of dissolved P and turnover rate of planktonic P were generally not affected. The net effect of UVR was an increase in steady state PO43- concentration (ssPO43-). Alkaline phosphatase activity (APA) in the dissolved and particulate fractions was significantly reduced in UVR treatments, but unrelated to changes in P uptake as proposed in the literature. This is the first study to comprehensively investigate the biotic effects of UVR on P cycling and represents a major advancement in the field of photobiology. In summary, I have characterized several poorly understood pathways in the P cycle of lakes. With the models I have developed, aquatic metazoans can now be integrated into the P cycle of lakes, for example, with other internal and external sources of P (e.g., from inlets, lake sediments and the atmosphere). This will advance our knowledge of P cycling, and will provide researchers with a better understanding of the nutrient pathways supporting primary production.
170

Flow-topography interactions, particle transport and plankton dynamics at the Flower Garden Banks: a modeling study

Francis, Simone 12 April 2006 (has links)
Flow disruption resulting from interactions between currents and abrupt topography can have important consequences for biological processes in the ocean. A highresolution three-dimensional hydrodynamic model is used to study topographically influenced flow at the Flower Garden Banks, two small but thriving coral reef ecosystems in the northwest Gulf of Mexico. Flow past the modeled banks is characterized by vortex shedding, turbulent wake formation and strong return velocities in the near-wake regions. The speed of the oncoming current, strength of water-column stratification, and level of topographic detail used in the model each serve to modulate these basic flow characteristics. Larval retention and dispersal processes at the Flower Garden Banks, and specifically the dependence of these processes on the nature of flow disruption, are explored by coupling a Lagrangian particle-tracking algorithm to the hydrodynamic model. Passive particles released from the tops of the modeled banks as mimics of coral larvae can remain trapped in the wake regions very close to the banks on time scales of hours to days, depending primarily on the speed of the free-stream current. Most particles are swept quickly downstream, however, where their trajectories are most strongly influenced by the topography of the continental shelf. Modeled dispersal patterns suggest that there is an ample supply of larvae from the Flower Garden Banks to nearby oil and gas platforms, which can provide suitable benthic habitat for corals. The flow disturbances generated by the modeled banks result in the mixing of nutrients from deeper water into shallower, nutrient-depleted layers in the wakes of the banks. The ability of the planktonic system to respond to such an injection of nutrients is tested by embedding a simple nutrient-phytoplankton-zooplankton ecosystem model into the hydrodynamic model. Plankton biomass in the flow-disturbed wakes is shown to increase in response to the additional nutrients. This study shows how flow-topography interactions at the Flower Garden Banks can exert critical control over local larval transport processes and plankton dynamics. More generally, it demonstrates the usefulness and feasibility of using numerical models as tools to uncover important mechanisms of physical-biological interaction in the ocean.

Page generated in 0.0359 seconds