1 |
Porta-enxertos para pereira (Pyrus sp.): implicações sobre a dormência, biologia floral e conteúdo de carboidratos. / Rootstock for pear (Pyrus sp.): implication on dormancy, floral biology and carbohydrate content.Veríssimo, Valtair 18 August 2008 (has links)
Made available in DSpace on 2014-08-20T13:25:41Z (GMT). No. of bitstreams: 1
TESE_Valtair_Verissimo.pdf: 3590695 bytes, checksum: 0329fe51ba9b30e95021c9dd6b0ef7b5 (MD5)
Previous issue date: 2008-08-18 / Floral bud abortion has been the main limiting factor to the expansion of the pear crop
in Brazil. That floral bud abortion has been considered as a complex problem that may
be affected by physiological, sanitary, genetic and climatic factors. The rootstock that is
the main subject of this study could also be an influencing factor in pear floral abortion,
since until the year 2000, only the vigorous rootstocks Pyrus calleryana and Pyrus
betulaefolia were used in Brazil. After that year, the pear growers of Santa Catarina and
Rio Grande do Sul states started using dwarfing quince rootstocks such as Adams and
EMC and the results has been satisfactory. In general these quince rootstocks are
more sensitive to water stress during drought periods, since they develop a relatively
small root system. However, the influence of these rootstocks on the physiology of
dormancy, carbohydrate metabolism and floral biology are not known. With the
objective of studying such unknown aspects, five experiments were carried out from
2005 to 2007 growth seasons. Part of these experiments was conduced under field
conditions in a commercial orchard in Vacaria, RS, whereas other experiment activities
were developed at Embrapa Clima Temperado research center in Pelotas, RS. All
were composed of: a general literature review on the pear bud abortion subject, and plus
five scientific articles, each one corresponding to one of the five above referred
experiments. The first article contain the biological method to determine the dormancy
level, on the pear cultivars Abbe Fetel and Packham s Triumph grafted on the quince
rootstock EMC or Adams. The second article brings the results on carbohydrate levels
in tissues of pear trees. The third article brings the results on floral biology of the above
referred two cultivars on the two above referred quince rootstocks. The fourth article
reports the results on the chilling requirement of potted trees of the pear rootstocks
quinces EMC, EMA and Adams and of the pear rootstocks Pyrus calleryana and Pyrus
betulaefolia, all them grown under controlled conditions. The fifth article reports the
effects of chilling on potted trees of the pear cultivars Kieffer and Packham s Triumph
grafted on the rootstocks quinces Adams, EMC or EMA, or on Pyrus betulaefolia,
under controlled conditions. It were concluded that: the sugar transport and the floral
biology were affected by rootstocks but not the dormancy development; the plants of
the pear rootstocks quinces EMA, EMC and Adams have higher chilling requirements
than the Pyrus calleryana and Pyrus betulaefolia rootstocks; the rootstock used changes
the vegetative budbreak percentage of canopy cultivar; and that the higher chilling hours
accumulated increased budbreak percentage and reduced floral bud abortion only until
the chilling requirement is attained but floral bud abortion is increased after that
condition. / O abortamento floral em pereira é o principal problema que limita o desenvolvimento
da pereira no Brasil, caracterizado por um complexo de fatores fisiológicos,
fitossanitários, genético e ambiental. O porta-enxerto, objeto central deste trabalho,
pode ser um fator que tem contribuído para aumentar tal problema, pois a cultura da
pereira se baseou, ao longo das últimas três décadas, no uso dos porta-enxertos Pyrus
calleryana e P. betulaefolia. A partir de 2000 os produtores do RS e SC passaram a
utilizar os marmeleiros, principalmente o Adams e EMC , obtendo resultados
satisfatórios. Em geral esses porta-enxertos são mais sensíveis ao estresse hídrico, por
apresentarem sistema radicular pouco desenvolvido. Entretanto se desconhece a
influência dos mesmos na fisiologia da dormência, na mobilização de carboidratos
durante o inverno e na biologia floral. Para atingir tais objetivos foram conduzidos
cinco experimentos entre 2005 e 2007, sendo parte deles conduzidos em pomar
comercial, na empresa Frutirol, em Vacaria-RS, e em condições controladas, na
Embrapa Clima Temperados, em Pelotas-RS. A tese possui seis capítulos, sendo o
primeiro uma caracterização e revisão bibliográfica geral do assunto e os demais cinco
artigos científicos. O primeiro artigo teve como objetivo avaliar a dinâmica da
dormência, através do uso do método biológico, de duas cultivares de pereira a Abate
Fetel e a Packham´s Triumph enxertadas em marmeleiros EMC e Adams . O
segundo visou determinar a concentração de carboidratos solúveis e amido. O terceiro
teve por objetivo o estudo da biologia floral. O quarto artigo, conduzido em condições
controladas, com plantas em vasos, tratou da determinação da exigência em frio dos
porta-enxertos de marmeleiros EMC , EMA e Adams , além dos porta-enxertos do
gênero Pyrus (Pyrus calleryana e P. betulaefolia). O quinto artigo, também em
condições controladas, visou determinar o efeito do frio em plantas conduzidas em vaso
nas cvs. Kieffer e Packham´s Triumph, enxertadas em Adams , EMC , EMA e
Pyrus betulaefolia . Conclui-se que a mobilização de açúcares e amido e a biologia
floral são influenciadas pelo tipo de porta-enxerto, mas não alterou a dinâmica da
dormência. Nos experimentos conduzidos com plantas em vaso, foi possível identificar
que os marmeleiros Adams , EMA e EMC possuem requerimento em frio maior do
que P.calleryana e P. betulaefolia. O porta-enxerto utilizado altera a percentagem de
brotação da cultivar copa, devido a redução do requerimento em frio ou calor. Por fim,
identificou-se que o maior acúmulo de frio aumentou a brotação e reduziu a incidência
de abortamento de gemas florais, mas somente até suprir o requerimento das plantas;
quando em excesso foi prejudicial.
|
2 |
Tolérance et accumulation du cuivre et du cobalt chez les métallophytes facultatives d’Afrique tropicaleLange, Bastien 30 September 2016 (has links)
Les sols enrichis en éléments traces métalliques, encore appelés sols métallifères, constituent un modèle original pour l’étude des processus écologiques et évolutifs opérant au sein de la végétation qui y est associée. Au Sud-Est de l’Afrique centrale, dans l’ex-province du Katanga, une succession d’affleurements naturels de roches enrichies en cuivre (Cu) et en cobalt (Co), uniques en leur genre à la surface de la terre, forment le très célèbre « Arc Cuprifère Katangais ». De véritables « collines de cuivre », isolées géographiquement dans une matrice de forêt claire, s’étendent sur plus de 300 Km et constituent des écosystèmes remarquables attirant l’attention de chercheurs depuis plus d’un demi-siècle.Les conditions écologiques extrêmes des collines de Cu et de Co, liées principalement à des concentrations métalliques élevées dans les sols (1 000 à 10 000 fois supérieures aux sols normaux), ont sélectionné des végétations hautement originales et uniques composées de métallophytes, aussi appelées cupro-cobaltophytes, pouvant toutefois présenter des niches écologiques très variables. Certaines de ces plantes possèdent même la fascinante particularité d’accumuler le Cu et/ou le Co dans leurs tissus foliaires à des niveaux de concentrations extrêmement toxiques pour des plantes normales, et sont qualifiées arbitrairement d’hyperaccumulatrices. À ce jour, de fortes variations d’accumulation du Cu et du Co encore mal comprises sont observées chez ces cupro-cobaltophytes. Celles-ci pourraient être expliquées par une variation de la disponibilité du Cu et du Co dans les sols, par une variabilité des mécanismes de tolérance au Cu et au Co, et par une variation de la capacité à accumuler ces métaux.Certaines cupro-cobaltophytes sont restreintes de ces habitats métallifères hors-normes, et d’autres se distribuent plus largement, possédant également des populations au sein d’habitats non-métallifères, en savane ou en forêt, sur sol normal. Ces dernières, à plus large distribution écologique, sont qualifiées de cupro-cobaltophytes facultatives, et constituent des modèles biologiques hautement intéressants pour étudier les processus écologiques et évolutifs liés à la tolérance et l’accumulation du Cu et du Co.La biogéochimie, l’écologie et l’évolution de la tolérance et de l’accumulation du Cu et du Co chez les cupro-cobaltophytes facultatives restent à ce jour peu connues, surtout pour le Co. La stratégie de recherche repose sur une approche interdisciplinaire (biogéochimie, écologie fonctionnelle et écologie évolutive) qui s’articule autour de travaux réalisés à la fois sur le terrain et en conditions contrôlées :sur un sol et en hydroponie. Chez une métallophyte facultative modèle à large amplitude écogéographique :Anisopappus chinensis (Asteraceae), la thèse s’attache à :(i) caractériser la variation phénotypique de l’accumulation du Cu et du Co et connaître les facteurs édaphiques qui l’influence, pour mieux comprendre la disponibilité du Cu et du Co dans les sols métallifères, (ii) tester l’influence de facteurs chimiques du sol sur la mobilité du Cu et du Co dans les sols et sur l’accumulation foliaire de Cu et de Co, (iii) étudier la réponse adaptative de populations métallicoles et non-métallicoles provenant d’habitats très contrastés, et leur réponse plastique au Co, (iv) examiner la variabilité génétique de la capacité à tolérer et à accumuler le Cu et le Co entre des populations métallicoles et non-métallicoles.Les variations d’accumulation de Cu et de Co observées au sein des populations métallicoles d’A. chinensis seraient en grande partie influencées par la teneur en matière organique et les concentrations totales en manganèse et en fer des sols de la zone racinaire. Le Cu et le Co potentiellement dans la solution du sol ne sembleraient pas être les seules fractions expliquant les variations d’accumulation. Les concentrations de Cu et de Co liées respectivement aux oxydes de manganèse et à la matière organique pourraient également représenter une concentration significativement disponible pour les plantes. En culture, une variation dans la mobilité du Cu et du Co dans le sol n’expliquait pas nécessairement une variation dans les concentrations foliaires mesurées chez A. chinensis. La disponibilité du Cu et du Co en milieu métallifère est un concept difficile à appréhender, élément- et espèce-dépendant, qui serait la résultante d’interactions biogéochimiques complexes à l’échelle de la rhizosphère, impliquant les microorganismes.Il existe une réponse adaptative à la diversité d’habitats chez A. chinensis traduite par des hauteurs de plantes et surfaces de feuilles plus faibles chez les populations métallicoles étudiées. Malgré des sols très contrastés chimiquement entre habitats métallifères et non-métallifères, très peu de variations intraspécifiques de la surface foliaire spécifique et des concentrations foliaires en nutriments ont été observées. La très faible réponse plastique au Co chez les populations étudiées d’A. chinensis semble mettre en évidence une homéostasiedes traits fonctionnels foliaires mesurés, qui pourrait expliquer la large niche écologique de l’espèce.La tolérance au Cu n’est pas un attribut vérifié à l’échelle de l’espèce chez A. chinensis. Celle-ci semblerait s’exprimer dans des conditions édaphiques bien particulières sur les sols métallifères, et pourrait être le fruit de processus rhizosphériques impliquant les microorganismes. Une différenciation génétique de la tolérance au Co a été observée chez les populations métallicoles des sols enrichis en Co. Une relation positive entre le degré de tolérance au Co et le niveau de concentration en Co dans le sol natif existerait. Pour la première fois chez une métallophyte, une variation génétique de l’accumulation de Co a été mise en évidence. L’hyperaccumulation du Cu et du Co chez les métallophytes, à de faibles concentrations disponibles dans les sols, n’existerait pas. Anisopappus chinensis provenant de sols enrichis en Co constitue un matériel végétal remarquable à valoriser, puisque s’exprimant comme une véritable accumulatrice de Co en conditions contrôlées. / Soils enriched in trace metal elements (TE) (i.e. metalliferous soils) constitute original model systems to study ecological and evolutionary processes occurring among their associated vegetation. In Southeastern central Africa (Katanga), a unique succession of natural copper (Cu) and cobalt (Co) outcrops occurs; the so-called “Katangan Copperbelt”. Here, scattered over 300 Km, geographically isolated “copper hills” form remarkable ecosystems that strongly contrast with the surrounding clear forest.Soil Cu and Co concentrations of those hills can be 1000- to 10 000-fold higher than in normal soils. These extreme ecological conditions have selected a unique vegetation of metallophytes, also called cupro-cobaltophytes. Some plants have the fascinating peculiarity to accumulate Cu and Co in their tissues up to extremely phytotoxic concentrations and are called “hyperaccumulators”. High misunderstood inter and intraspecific variations of Cu and Co accumulation are observed within this flora. These variations could be explained by variations in Cu and Co availability in soils, but also by inter and intraspecific variations in Cu and Co tolerance mechanisms and capacity to accumulate Cu and Co.Some cupro-cobaltophytes are restricted to metalliferous habitats (i.e. endemic metallophytes) and some are widely distributed, with populations on normal soils (i.e. facultative metallophytes). These latter are of high interest to study the ecology and evolution of Cu and Co tolerance and accumulation.Biogeochemistry, ecology and evolution of Cu and Co tolerance and accumulation in facultative cupro-cobaltophytes remains poorly understood, especially for Co. Research strategy was to develop a transdisciplinary approach (biogeochemistry, functional ecology and evolutionary ecology) based on field works and experiments (using soil or nutrient solution). For Anisopappus chinensis (Asteraceae), a broad-niched and geographically widespread facultative metallophyte chosen as model species, this PhD thesis aims at: (i) investigate the phenotypic variation of Cu and Co accumulation, and the influencing soil chemical factors, to understand better Cu and Co availability in metalliferous soils, (ii) test the influence of soil chemical factors on Cu and Co mobility in soil and accumulation, (iii) studyadaptive response of metallicolous (M) and non-metallicolous (NM) populations from contrasted habitats, and their plastic response to Co, (iv) examine the genetic variation in Cu and Co tolerance and accumulation between M and NM populations.Copper and Co accumulation variations among M populations of A. chinensis are clearly influenced by organic matter content and soil total manganese and iron concentrations in the rooting zone. Mobile Cu and Co concentrations, potentially in the soil solution, would not only explain Cu and Co accumulation variations. Copper and Co bound to respectively manganese oxides and organic matter could also represent Cu and Co available concentrations for plants. In experimental conditions, variations in Cu and Co mobility would not necessary explained variations in foliar Cu and Co concentrations in A. chinensis. Copper and Co availability is a complex element- and species-specific mechanism, closely related to all biogeochemical processes that occur in the rhizosphere. Important role of microorganisms is expected.Adaptive response to habitats has been highlighted for A. chinensis. Metallicolous plants had consistently lower height and leaf size than NM plants. Despite strong contrast in the soil chemistry between metalliferous and non-metalliferous habitats, very few variations in specific leaf area and leaf nutrient concentrations was observed between M and NM populations. The low plastic response to Co seems to reveal homeostasis of the studied functional leaf traits, which might explain the broad ecological niche of the species.Tolerance to Cu is not constitutive of A. chinensis and would be express under specific growth conditions in nature. Expression of Cu tolerance could be the result of specific soil-plant-microorganisms processes. Genetic differentiation in Co tolerance has been demonstrated in M populations from Co-enriched soils. Positive relationship between the level of tolerance to Co and the concentration of Co in the native soil may exist. Genetic variability of Co accumulation has been demonstrated for the first time in a metallophyte. Cu and Co hyperaccumulation at low available concentration in the soil would not exist in metallophytes. Anisopappus chinensis form Co-enriched soils expressed as a genuine Co accumulator and thus, constitute an interesting valuable biological model. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1263 seconds