• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 185
  • 173
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 9
  • 8
  • 7
  • 7
  • 5
  • 3
  • Tagged with
  • 771
  • 153
  • 141
  • 134
  • 128
  • 98
  • 93
  • 79
  • 73
  • 70
  • 70
  • 69
  • 69
  • 67
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Developing and Testing a Trafficability Index for Planting Corn and Cotton in the Texas Blackland Prairie

Helms, Adam J. 2009 December 1900 (has links)
The Texas Blackland Prairie is one of the most productive agricultural regions in Texas. This region provides a long growing season coupled with soils that have a high water holding capacity. However, the soils also provide significant challenges to producers because the high water holding capacity is a product of a high clay percentage. This research was aimed to develop and test an expert-based trafficabililty index, based upon soil moisture, for planting cotton (Gossypium hirsutum L.) and corn (Zea mays L.) on the Texas Blackland Prairie. Testing the index focused on quantify the potential effect of high soil moisture at planting on seed furrow sidewall compaction and associated plant growth response. Once the trafficability index was developed, three workable soil moisture regimes were recreated in no-tillage and conventional tillage plots at the Stiles Farm Foundation in Thrall, Texas. The index nomenclature included: "Dry-Workable", "Optimal" and "Wet-Workable". After planting corn and cotton into conventional and no tillage plots, 0.45 x 0.20 x 0.15 m intact soil blocks were removed from each plot and kept in a controlled environment. At 28 days, each block was destructively harvested to quantify plant root and shoot growth responses. Each of the three soil moisture indexes was replicated thrice per crop, and the whole experiment was replicated twice in time, n = 48 blocks. The trafficability index was created using three producer experts, and over 10 interviews to collect a range in soil moisture samples. From "Wet Workable" to "Dry Workable", the gravimetric soil moistures were 0.17, 0.22, and 0.26 g g-1. For corn and cotton, a positive relationship between plant growth factors and planting at soil moisture existed. Plants planted at the highest soil moisture emerged faster and developed more root and shoot biomass than those planted at the lowest soil moisture. No evidence of a detrimental plant response because of seed furrow, sidewall compaction from planting at too high a soil moisture content could be quantified. Furthermore, the cotton plants in no-tillage performed better than in conventional tillage, but corn performed better in conventional tillage. Because the results showed an advantage to plant growth by planting in the "Wet Workable" index, the tillage practice that allows the producer to enter the field with a planter at higher moisture contents appears to have an advantage.
382

Nonindustrial private forest landowner participation in incentive programs and regeneration behavior

Sun, Xing, January 2007 (has links)
Thesis (M.S.)--Mississippi State University. Department of Forestry. / Title from title screen. Includes bibliographical references.
383

Användning av markfuktighetskartor för ståndortsanpassad plantering / Use of Depth-to-Water maps for site adapted planting

Jakobsson, Malin January 2015 (has links)
Digital depth-to-water maps can be produced from a digital elevation model (DEM). Then GIS- based algorithms are used to calculate water flows and the depth-to-water index classes dry, fresh, moist and wet. The purpose of this study was to investigate the possibility to use depth- to-water maps for site adapted planting. The results showed that use of depth-to-water maps for site adapted planting, roughly halved the proportion of improperly planted surfaces from an average of 9 % to 4 %. The variation in the values of proper surface decreased and the result became more even.. In addition, more pine than spruce was incorrectly planted. Without soil moisture maps, the proportion of improper pine and spruce was 66 % and 34 % respectively, and with soil moisture maps, the proportion of improper pine and spruce was 55 % and 45 % respectively. This shows that for regenerations planted without the depth-to-water maps, mostly pine was incorrectly planted, but for the regenerations planted with the depth-to-water maps, the proportions were similar for spruce and pine. The conclusion from the results indicated that depth-to-water-maps can improve site adapted planting. By using the maps it is possible to get a good overview of the conditions and terrain variations of the planting sites.
384

Effects of Short Shoot Number and Presence of an Apical Meristem on Rhizome Elongation, New Short Shoot Production, and New Rhizome Meristem Production of Thalassia Testudinum Banks and Solander Ex König Planting Units in Tampa Bay.

Meads, Michael Vearl 01 January 2012 (has links)
Thalassia testudinum Banks and Solander ex König is the dominant seagrass in the Gulf of Mexico, Caribbean and the West Coast of Florida, yet little rhizome elongation, new short shoot production, or new rhizome meristem production data has been collected via direct measurement. A study of the rhizome growth of T. testudinum was completed in December 2004 in southern Tampa Bay that determined growth after 26.5 months. Two PVC planting frames each containing four rhizomes with 2 short shoots, two rhizomes with 4 short shoots, and two rhizomes with 8 short shoots were planted next to existing T. testudinum beds at 5 sites (n = 10 planting frames). The rhizome apical meristem was removed from half of each set of short shoot units on each planting frame. Plants initially lacking a rhizome meristem produced more new long shoot meristems than those planted with an intact meristem, and larger planting units produced more new rhizome meristems than smaller ones, P = 0.001 and P < 0.001, respectively. The total number of rhizome meristems per planting unit (new meristems + initial meristem) was greater in plantings initially lacking a long shoot meristem in the 2, 4 and 8 short shoot size classes. Only the two short shoot plants benefited from an intact rhizome meristem at planting time, elongating 66.4 cm versus 60.4 cm for plants initially lacking a rhizome meristem at 26.5 months. In the 4 and 8 short shoot classes, plants that lacked a rhizome meristem at planting outpaced those with a meristem, producing 192.1 and 277.9 for 4 and 8 short shoot plants compared to 120.9 cm and 177.7 cm for plants with a meristem during the same time period. The greatest growth rate increases were due to lateral branching on planting units that lacked a rhizome meristem in the two largest size classes (4 and 8 short shoots); the differences between plants with an intact rhizome meristem and those without with the size classes pooled did not prove to be statistically different, P = 0.112. Differences among the size classes were significant, however, P < 0.001. Analysis of new short shoots was analogous to the results for rhizome elongation, with the presence of an initial rhizome factor proving insignificant, P = 0.401, and the initial number of short shoots factor proving significant, P < 0.001. The rhizome growth, new short shoot production, and new rhizome meristem production data determined by direct measurements in this study appear to be the first planting unit measurements for this species under natural conditions.
385

A comparative study of riparian drain management and its effects on phosphate and sediment inputs to Te Waihora/Lake Ellesmere.

Mitchell, Hannah Laugesen January 2012 (has links)
Issues affecting water quality are seen as one of the most important and pressing global problems of our era. In New Zealand, water bodies with the poorest water quality and ecological condition tend to be surrounded by pastoral land use. Lake Ellesmere/Te Waihora in Canterbury, New Zealand, is a typical example of the issues that nutrient and sediment run-off from pastoral land can create. The aim of this study was to determine the relationship between sediment concentrations, phosphate concentrations, ecological state and the degree of riparian restoration on drains that flowed into Lake Ellesmere/Te Waihora, and to calculate the load of phosphorus and sediment delivered by each of the drains to Te Waihora over the year, comparing this to the loads carried by larger, natural streams and rivers. Little research has been done on these small artificial tributaries of the Lake Ellesmere/Te Waihora catchment. Data collection was carried out on 10 drains with variable degrees of riparian planting, monthly in summer and autumn, and fortnightly in winter and spring, due to higher variability in drain flows during this time. Sites 1, 2 had low dissolved oxygen (DO) and high total phosphorus (TP), lack of flow and extremely high conductivity, and (with) Site 5, higher suspended particulate matter (SPM) concentrations. All these factors are consistent with the lack of ecology occurring in these drains. All drains failed to meet the Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for TP concentrations. All water chemistry parameters showed significant differences between seasons except conductivity. Mean water temperatures and pH were higher in summer and lower in winter, while mean DO levels were higher in winter (and spring) and lower in summer (and autumn). Macroinvertebrate analyses indicated moderate to severe pollution in all the drains, despite the amount of riparian planting present and the presence of macroinvertebrate community structure was related mainly to substrate size. The degree and type of riparian planting present on the drains studied did not appear to affect TP, SPM, macroinvertebrates or general water quality. This is likely to be due to the fact that little of the riparian planting had been specifically planted for restoration purposes. The highest loads of TP and SPM occurred in winter and spring, and in the larger (wider and deeper) drains. As flow increased in the drain, so did the load of phosphorus and sediment carried. Comparison with Environment Canterbury monitoring data for the river tributaries of the lake indicated that more TP and SPM is carried to the lake by natural rivers and streams, than by the drains, but the latter do make a significant contribution. The percentage of TP that is in dissolved form was higher than had previously been assumed, in both the drains and the larger, natural rivers and streams. It is recommended that future restoration work aim to reduce the amount of phosphorus and sediment entering the larger drains in winter and spring. More adequate riparian planting needs to occur on these drains, and it needs to be managed in a way that a reduction in dissolved phosphorus levels is also achieved.
386

Direct seeding of native species for reforestation on degraded hillsides in Hong Kong

Chick, Hiu-lai., 戚曉麗. January 2004 (has links)
published_or_final_version / abstract / toc / Ecology and Biodiversity / Master / Master of Philosophy
387

Intercropping and mechanical weeding : effects on insects of Zea mays

Brunet, Francine. January 1996 (has links)
A study was undertaken from 1993 to 1994 to determine the effects of intercropping (with Glycine max L Merr., Lupinus sp., Trifolium pratense L.-Lolium multiflorum Lam., or Secale cereale L.) and mechanical weeding (with a rigid tines cultivator, Danish tines cultivator or ridge cultivator) on the population dynamics of insect pests (Diabrotica longicornis Say, Lygus lineolaris Palisot de Beauvois, Ostrinia nubilalis Hubner, and Pseudaletia unipuncta Haworth) on corn (Zea mays L.) in L'Assomption and Sainte-Anne-de-Bellevue, Quebec, Canada. / D. longicornis or P. unipuncta populations did not increase. / In 1994, intercropping with T. pratense-L. multiflorum (Sainte-Anne-de-Bellevue) or weeding with the Danish tines cultivator (L'Assomption) increased L. lineolaris populations. / In 1994, intercropping with S. cereale (L'Assomption) ot T. pratense-L. multiflorum (Sainte-Anne-de-Bellevue) increased O. nubilalis populations.
388

Biomass and protein yields, N2-fixation and N transfer in annual forage legume-barley (Hordeum vulgare L.) cropping systems

Sampson, Helen G. (Helen Grace) January 1993 (has links)
In this study, six annual legumes and the perennial, red clover (Trifolium pratense L.) were monocropped (MC) and intercropped (IC) with barley in a field study with three N levels, 0, 30 and 60 kg N ha$ sp{-1}$. At O kg N ha$ sp{-1}$, N$ sb2$-fixation and N transfer were estimated by the $ sp{15}$N isotope dilution (ID) method. At 60 kg N ha$ sp{-1}$, a direct $ sp{15}$N labelling method was employed to study N transfer. The hypotheses were that the annual species would be more productive within one growing season than red clover, that increased N levels would increase herbage dry matter (DM) and crude protein (CP), that the proportion of N derived from N$ sb2$-fixation in IC-legumes would be higher than that of MC-legumes and that within intercrops there would be evidence of N transfer. In neither year was the total DM yield of red clover, MC or IC, less than the rest of the legumes. In 1991, the total DM yield of intercrops responded to 30 kg N ha$ sp{-1}$; in neither year did the estimated total CP yield of MC-legumes or intercrops respond to N levels. Only in 1992 was there evidence of N$ sb2$-fixation and the proportion of N derived from fixation by IC-legumes was 145% higher than that of MC-legumes. Only the $ sp{15}$N direct labelling method gave evidence of N transfer, to associated legume and barley plants in 1991, and to associated legume plants in 1992.
389

The effect of cultivation and intercropping on the incidence of ear rot of corn and head blight of wheat

Dupeux, Yann Alain January 1995 (has links)
Three cultivators, Rabewerk, Kongskilde and Hiniker, and three intercrops, soybean, lupin and red clover + rye grass were investigated for their impact on the incidence of ear rot of corn, a common disease of maize in eastern Canada. Wheat was seeded in the corn rows to serve as an additional indicator of cultivation and intercropping effects on the pathogen. An artificial inoculum of F. graminearum that produced perithecia and ascospores was used to mimic natural inoculum. / In 1993 and 1994, the infection in the corn was not very severe and there were no differences between the treatments and the controls. / In 1993 and 1994, at both sites, wheat seeds from cultivation trials showed a tendency for greater disease incidence in the non-cultivated herbicide treatment when compared to any of the other cultivator treatments. Cultivators till the soil and bury corn residues, this action led to the destruction of some of the inoculum and a subsequent reduction of the disease incidence in the cultivated plots. / In the intercrop trial of 1993 and 1994, wheat infection was moderate to severe, except at L'Assomption in 1993, but no significant differences were observed among the treatments. It is believed that interplot interference, due to ascospores moving from one plot to the next, masked differences. / The results indicated that weed cultivation would have a negligible or no effect on the development of fusarium ear rot of corn in Quebec. (Abstract shortened by UMI.)
390

Water table management and cropping systems for intensive corn production

Kaluli, J. Wambua January 1996 (has links)
The use of agricultural chemicals, such as nitrogen fertilizers in corn production, often results in water pollution. This research, comprising three parts, was designed to investigate the effects of nitrogen fertilizer application rates, water table management, and corn cropping systems on drainage water quality. The first part was a field study, to investigate the impact of two cropping systems and water table management on nitrate loss through tile drainage. The considered water table treatments were free drainage, and subirrigation with target water table depths at 0.5 m or 0.75 M below the soil surface. Corn (Zea mays L.) monoculture and corn intercropped with annual ryegrass (Lolium multiflorum Lam.) were investigated. The highest annual tile drainage losses of 21.9 kg N/ha were measured in monocropped, freely draining plots. Subirrigation with a water table depth of 0.5 m reduced tile drainage loss of N by over 70%, and intercropping corn with ryegrass under free drainage reduced leaching losses by 50%. / The second part of the research was a simulation study with the water quality model, DRAINMOD-N. The water quality impact of fertilizer application rate under free drainage, subirrigation and controlled drainage was evaluated. Leaching losses, denitrification and N accumulation in the soil profile were investigated. Using data obtained from the field experiment, the performance of DRAINMOD-N was evaluated. DRAINMOD-N assumes that denitrification follows first order kinetics, contrary to field measurements which showed little correlation between denitrification rate and NO$ sb3 sp-$-N concentration. Therefore, DRAINMOD-N was modified by replacing the original denitrification function with the Michaelis-Menten relationship. In so doing, denitrification is expressed as a first order process when NO$ sb3 sp-$-N concentration limits denitrification, and as a zero order process for non-limiting NO$ sb3 sp-$-N concentration. / For denitrification to be a decision making criterion of water table management, inexpensive but reliable measurement techniques are required. Thus, the purpose of the final part of this research was to formulate a technique for measuring real-time denitrification rate. Denitrification rate could be expressed as a function of soil redox potential (Eh) and temperature. Laboratory and field studies showed that factors such as soil nitrate and organic carbon had negligible effect on denitrification rate. Therefore, it can be concluded that for most agricultural soil, Eh and soil temperature will satisfactorily describe denitrification variation.

Page generated in 0.0892 seconds