• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 32
  • 32
  • 30
  • 30
  • 14
  • 8
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Induced defense responses in plants by bacterial lipopolysaccharides

Coventry, Helen 16 August 2012 (has links)
M.Sc. / Plant disease can be naturally suppressed by plant growth promoting rhizobacteria and endophytic / endorhizosphere bacteria. Apart from direct antagonism against pathogenic organisms, these plant growth promoting bacteria and endophytes can induce a form of systemic resistance (ISR) in plants. The main bacterial inducing component has been suggested to be the outer membrane lipopolysaccharides (LPS), found in the cell walls of Gramnegative bacteria. Burkholderia cepacia (Pseudomonas cepacia) is a bacterial endophyte that has potential as a biocontrol agent. Although a few studies have indicated that LPS from, certain Pseudorrionads has a protective effect in plants against disease, a controlled investigation has not been attempted previously with a purified preparation of LPS. LPS was isolated from the bacterial cell wall, prepared and characterized by denaturing electrophoresis. Characterization of the LPS also included the determination of 2-keto-3-deoxyoctonate, carbohydrate —, as well as the protein content. The purified LPS was found to possess activity as an elicitor of plant defence responses in tobacco where the induction of pathogenesisrelated (PR) proteins were investigated and electrophoretically analysed. An optimum LPS concentration range of 50-150 14/m1 was determined by studying cell death using the Evans blue procedure. Time and concentration ranges for LPS induced responses were established in cell suspensions, leaf discs, whole leaves and whole plants. It was determined that the PR-protein response could be optimally induced after four days following elicitation with 100 fag/ml LPS. Systemic induction of resistance was tested by treatment of the lower leaves and following the response in the upper leaves; as well as bacterial inoculation of the plant roots followed by PR-protein extraction of the leaves. Treatment of tobacco plants with LPS protected the plants against subsequent infection by the pathogen Phytophthora nicotianae, thereby suggesting a role for LPS as activators of systemic acquired resistance (SAR). It can be concluded from this study that the lipopolysaccharides from Burkholderia cepacia, that were used in this study, are effective local as well as systemic inducers of the defense PR-proteins in Nicotianae tabacum cv Samsun NN. The fact that protection is associated with PR-protein induction distinguishes it from the protection induced by rhizobacteria.
22

DDRT-PCR analysis of Lipopolysaccharide induced gene expression in tobacco cells

Sanabria, Natasha Mary-Anne. 14 August 2012 (has links)
M.Sc. / LPS, as a pathogen associated molecular pattern (PAMP) molecule can interact with eukaryotic host cells. Interaction occurs by either direct contact or due to the release of micelles containing LPS from bacterial cell surfaces. LPS activates innate host defence systems in both invertebrate and vertebrate animal/insect cells via analogous pathways, where the lipid A component,is responsible for the activities. LPS from several plant pathogens have been shown to activate a number of defence-related responses in plants. Initial concentration studies and cell viability assays were conducted to assess isonitrosoacetophenone (INAP) and LPS as elicitors of defensive responses in tobacco (Nicotiana tabacum cv. Samsun) cell suspensions. The effective concentrations were found to be 100vM INAP and 100μg/ml LPS. RNA was isolated, quantified and analysed to confirm the quality of the starting material for differential display analysis. The DDRT-PCR technique was successfully applied in order to obtain comparative "displays" of PCR amplicons derived from three sub-divided mRNA pools (i.e. each of the three different anchor primers, per treatment). Significant differences in the profiles of control, INAP and LPS treated cells were observed, indicating that the eliciting agents had prominent effects on cellular homeostasis, resulting in an altered gene expression profile. DDRT-PCR can be technically challenging at a number of steps. Modifications were incorporated to initially obtain differentially expressed transcripts (DETs), as well as reamplify the DETs. 223 Putative DETs were isolated from denaturing polyacrylamide sequencing gels. 172 Putative DETs were re-amplified, of which 126 appeared as good candidates for further analysis. Finally, 96 putative DETs were chosen for reverse Northern analysis. DDRT-PCR has been reported to be plagued by false positives. Reverse Northern analysis confirms the presence of the putative DET from the subdivided RNA pool, as well as affirming the differential expression, compared between the control and inducer blots. 26 DETs were selected for cloning, of which 16 were sequenced. Homologies between the DETs and known sequences were determined using BLASTN and BLASTX alignments, DNAssist software, as well as MIPS alignments to the Arabidopsis genome. Five of the DETs were assigned putative functions in plant signal perception, transduction and the defence response, based on their respective sequence homologies to sequences involved in innate immunity. It is proposed that the DET, HAP3-15, represents the plant equivalent of a component of the innate immunity pathway in mammals and Drosophila. It is further proposed that HAP3-15 represents a S-Receptor kinase protein (SRK), with a defensive role in distinguishing self from potential pathogens. Therefore, as a SRK, HAP3-15 would function as a transmembrane receptor able to conduct an external signal through the membrane to the cytoplasm as a form of signal perception. Subsequently HAP3-15 could ii play a role in phosphorylation cascades through the kinase domain and, consequently, be responsible for signal transduction. In addition, LPS would then represent the ligand creating the signal perceived by the SRK, HAP3-15, with oligosaccharide binding ability. HAP3-15 was also identified as a true positive by the INAP probe in reverse Northerns, implying that both the biological and chemical inducers used, activated the same receptor kinase. Whether the same signalling pathway was followed during the phosphorylation cascades has not been determined. Further analysis will require Northern blots in a time study to investigate the kinetics of induction. In addition, longer sequence information for each of the five DETs needs to be obtained to identify the corresponding genes in order to investigate their roles in innate immunity in plants.
23

Determination and manipulation of biologically active triterpenoid secondary metabolites in Centella asiatica

James, Jacinda Terry 24 July 2013 (has links)
D.Phil. (Biochemistry) / Plants are able to recognise and respond to signals from the environment through a complex array of biochemical pathways, which enables them to deter pathogenic micro-organisms and herbivores. Thousands of different structures of low-molecular weight organic compounds / natural products can be produced through an inducible chemical defence system; that can be manipulated for biotechnological purposes. The importance of natural products in medicine, agriculture and industry has led to numerous studies such as this, to understand the biosynthesis and biological activity of these substances...
24

Biometrical analysis of pathogenicity in the Ustilago hordei--Hordeum vulgare host-parasite system

Pope, David D. January 1982 (has links)
This study involves a measure of the variability of descendants from a cross between Ustilago hordei race 7 and race 11, on two varieties of barley, Trebi and Odessa. Components of variability were defined, statistically described and compared. Biometrical analyses uncovered the action of significant additive and non-additive genetic effects. Differential interactions between treatments and varieties revealed the existence of at least one virulence gene. Specific polygenes and the virulence gene were found to produce significant interactions with different environmental conditions. Homogeneity of variance of the genetic components of the F2 from three randomly chosen F1 dikaryotic lines demonstrated the highly homozygous condition of the parental teliospores. Covariance - variance regression analysis was used to study the dominance and epistatic differences between treatment dikaryons. There is evidence for ambidirectional dominance. The number of effective factors operating against the varieties, Trebi and Odessa, were estimated to be between 4-6 and 1-2 respectively. / Science, Faculty of / Botany, Department of / Graduate
25

Componentes monocíclicos do cancro cítrico no sistema Xanthomonas axonopodis pv. citri-limão Tahiti- Phyllocnistis citrella, sob condições controladas. / Monocyclic components of the asiatic citrus canker in the system: Xanthomonas axonopodis pv. citri-tahiti lime- Phyllocnistis citrella, under controlled conditions.

Christiano, Rock Seille Carlos 29 January 2004 (has links)
O Cancro Cítrico (CC), causado por Xanthomonas axonopodis pv. citri ( Xac) é uns dos mais graves problemas fitossanitário da citricultura paulista. A partir da introdução da Lagarta Minadora dos Citros (LMC), Phyllocnistis citrella, o comportamento do CC mudou drasticamente, tornando-se mais severo. Para compreender a interação de Xac e da LMC em Limão Tahiti foram conduzidos, em condições controladas, três experimentos: (A) influência da via de penetração de Xac (estômato, ferimento mecânico e injúria de LMC das fases ovo, 1º ínstar, 3º ínstar e pupa) e das concentrações de inóculo de 10 1 , 10 2 , 10 4 e 10 6 UFC/mL na infecção de Xac; (B) efeito da idade do ferimento mecânico, da injúria de LMC e da folha intacta no progresso do CC; (C) influência da temperatura e do período de molhamento no desenvolvimento do CC. No experimento A, a concentração mínima de inóculo para causar CC via penetração de Xac por estômato foi de 10 4 UFC/mL; 10 2 UFC/mL para via ferimento mecânico e injúria de LMC na fase ovo e 1º ínstar; e 10 1 UFC/mL para via injúria fase 3º ínstar e pupa. A injúria da fase 3º ínstar e pupa proporcionaram maior severidade em relação às outras vias de penetração nas concentrações testadas (aproximadamente 6 vezes maior que a severidade em folha intacta a 10 6 UFC/mL). As severidades em folha com ferimento mecânico e com injúria da fase ovo e 1º ínstar não diferiram da folha intacta. No experimento B, o ferimento mecânico entre 0 e 6 dias após o ferimento da folha (0 a 6 dias de idade), injúria de LMC entre 0 e 32 dias após a ovoposição de P. citrella na folha (0 a 32 dias de idade) e folha intacta entre 0 e 35 dias após a emissão da folha (0 a 35 dias de idade) foram suscetíveis a Xac. A severidade decresceu linearmente com o aumento da idade do ferimento e da folha intacta. A severidade, em relação à idade de injúria, variou em função do modelo Beta generalizado, com ponto de inflexão aos 18 dias. A máxima severidade estimada em folha com injúria foi 10 vezes maior que em folha intacta. No experimento C, observou-se que para os menores intervalos de aparecimento de lesões e 100% de incidência de CC, as condições ótimas foram de 25 a 35ºC com período mínimo de molhamento de 4 horas. O modelo Beta-monomolecular ajustou-se bem à variação da severidade em função da temperatura e da duração do molhamento foliar. As temperaturas mínima e máxima estimadas foram de 14,9 e 42ºC. A máxima severidade estimada foi determinada para o molhamento de 24 horas a 31,7ºC. Em geral, a injúria de LMC nas fases acima de 3º ínstar influenciou na infecção de Xac possibilitando infecções mesmo em baixas concentrações de inóculo (10 células/mL) e durante um longo período (32 dias). Em folhas com injúria de LMC, a severidade de CC pode ser 10 vezes maior que em folha intacta. As condições favoráveis para a infecção de Xac são de 25 a 35ºC e a bactéria não demanda longos períodos de molhamento foliar (acima de 4 horas). Por esses resultados, conclui-se que a LMC tem papel relevante na epidemiologia do CC. / The Asiatic Citrus Canker (ACC), caused by Xanthomonas axonopodis pv. citri ( Xac) is one of the most serious problems of citrus in São Paulo State, Brazil. After the introduction of Citrus Leafminer (CLM), Phyllocnistis citrella, the behavior of ACC changed drastically, becoming more severe. To understand the interaction of Xac and CLM on Tahiti Lime, it were, under controlled conditions, carried three experiments: (A) influence of the way of Xac penetration (stomata, mechanical wound and CLM injury of the stage: egg, 1st instar, 3rd instar and pupa) and of the inoculum concentrations of 10 1 , 10 2 , 10 4 and 10 6 CFU/mL in the Xac infection; (B) effect of the age of mechanical wound, of CLM injury and of unwounded leaf in the progress of the ACC; (C) influence of the temperature and of the period of leaf wetness in the development of the ACC. In the experiment A, the minimum inoculum concentration to cause ACC by penetration of Xac through stomata was of 10 4 CFU/mL; 10 2 CFU /mL by mechanical wound and CLM injury of egg stage and 1st instar; and 10 1 CFU /mL by injury of 3rd instar and pupa stage. The injury of 3rd instar and pupa stage have generated higher severity in relation to other ways of penetration on all concentrations (about 6 times more than the severity in unwounded leaf on 10 6 CFU /mL). The severities in leaf with mechanical wound and with injury of egg stage and 1st instar have not differed from the unwounded leaf. In the experiment B, the mechanical wound between 0 and 6 days (0-6 days of age), the CLM injury between 0 and 32 days after eggs laying of P. citrella (0-32 days of age) and unwounded leaf between 5 and 35 days (5-35 days of age) have shown susceptibility to Xac. The severity decreased linearly with increasing age of the wound and age of unwounded leaf. In relation to age of injury, the severity varied in function of generalized Beta model and the inflection point was 18 days. The maximum severity in leaf with injury was 10 times bigger than in unwounded leaf. In the experiment C, the optimum conditions appearance of lesions and 100% of incidence were 25-35ºC under minimum wetness duration of 4 hours. The Beta-monomolecular function provided a good description of severity variation in relation to the temperature and duration of leaf wetness. The estimated minimum and maximum temperatures were 14.9 and 42ºC. The estimated maximum severity was determined under wetness of 24 hours and 31.7ºC. In general, the LMC injury (up to 3rd instar stage) has influenced in the Xac infection, it has increased the efficiency of bacterium penetration still on low inoculum concentration and it has allowed Xac infection for long period (32 days). In leaf with CLM injury, the severity can be 10 times bigger than in unwounded leaf. The Xac infection is favored under 25-35ºC and the Xac does not demand long periods of leaf wetness (more than 4 hours).
26

Characterization of the response mediated by the plant disease susceptibility gene LOV1

Gilbert, Brian M. 09 October 2013 (has links)
Victoria blight, caused by fungus Cochliobolus victoriae, is a disease originally described on oats and recapitulated on Arabidopsis. Victoria blight is used as a model plant disease that conforms to an inverse gene-for-gene interaction. C. victoriae virulence is dependent upon its production of victorin, a host-specific toxin that induces programmed cell death in sensitive plants. In oats, victorin sensitivity and disease susceptibility is conferred by the Vb gene, which is genetically inseparable from the Pc-2 crown rust resistance gene. In Arabidopsis, victorin sensitivity and disease susceptibility is conferred by the LOCUS ORCHESTRATING VICTORIN EFFECTS 1 (LOV1) gene which encodes a NB-LRR protein, a type of protein commonly associated with disease resistance. LOV1-mediated cell death occurs when victorin binds Thioredoxin-h5 (TRX-h5) and LOV1 appears to "guards" TRX-h5. Together, these results suggest C. victoriae causes disease by inducing a resistance response. The work presented here aimed to determine if the response mediated by LOV1 is functionally related to a resistance response. We genetically characterized the response mediated by LOV1 with virus-induced gene silencing. We determined SUPPRESSOR OF THE G2 ALLELE OF SKP1 (SGT1), a gene required for the function of many resistance genes, is required for victorin sensitivity and involved in LOV1 protein accumulation. We screened a normalized library and identified six genes that suppressed victorin-mediated cell death and cell death induced by expression of the RESISTANCE TO PERONOSPORA PARASITICA PROTEIN 8 (RPP8) resistance gene: a mitochondrial phosphate transporter, glycolate oxidase, glutamine synthetase, glyceraldehyde 3-phosphate dehydrogenase and the P- and T-protein of the glycine decarboxylase complex. Silencing the latter four also inhibited cell death induced by the expression of an autoactive form of the resistance gene PTO, and reduced PTO-mediated resistance to Pseudomonas syringae pv. tabaci. These results provide evidence that victorin-mediated cell death is functionally similar to a resistance response, further supporting the hypothesis that a resistance response is exploited by C. victoriae for pathogenesis in Victoria blight. Resistance function of LOV1 was evaluated by observing Pseudomonas syringae pv. tomato virulence upon LOV1 activation. The LOV1 response pathway in Arabidopsis was adapted to activate upon infection with Pseudomonas syringae pv. tomato expressing the type III-dependent effector protein AvrRpt2, a well-characterized protease. We developed a construct to express a beta-glucuronidase (GUS) and TRX-h5 fusion protein separated by an AvrRpt2 proteolytic cleavage site, in which GUS sterically inhibits TRX-h5 function in LOV1-mediated cell death. The fusion is cleaved upon infection by P. syringae pv. tomato expressing avrRpt2, thereby leading to TRX-h5-mediated activation of LOV1 in the presence of victorin. However, when this strain was inoculated with victorin into transgenic LOV1 trx-h5 plants expressing the GUS/TRX-h5 fusion protein, no decrease in pathogen virulence was observed. Technical shortcomings likely prevented observable LOV1 resistance function. ��� / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Oct. 9, 2012 - Oct. 9, 2013
27

Transgenerational changes in progeny of compatible pathogen infected plants

Kathiria, Palak, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
[No abstract available] / xi, 176 leaves : ill. (chiefly col.) ; 29 cm
28

Identification of Ty3gypsy-like sequences in A. thaliana, L. sativa, Lycopersicon, and Z. mays

Leclerc-Potvin, Carole. January 1996 (has links)
The nucleotide sequence of a cloned RAPD DNA marker (OPI08) linked to a disease resistance gene in L. sativa (lettuce) revealed homology with the conserved domain of the reverse transcriptase of Ty3/gypsy retrotransposons. To further characterize the presence of Ty3/gypsy-like sequences in plants, sets of degenerate primers deduced from archetype retrotransposons were used for PCR amplification of a sequence domain characteristic of the reverse transcriptase and the integrase of Ty3/gypsy retrotransposons. The nucleotide sequence of two cloned DNA fragments of Z. mays (maize) and A. thaliana proved to be homologous with the conserved domains of the reverse transcriptase and the integrase of Ty3/gypsy retrotransposons. Southern blot analysis also demonstrated homology of the Z. mays clone to Lycopersicon (tomato) and L. sativa. This is the first report of Ty3/gypsy-like sequences in A. thaliana, and L. sativa. This research brings to six the number of plant species where this type of element has been reported, in contrast to the large number of plant Ty1/copia transposable elements described. It is not known whether these elements are actively transposing in plant genomes.
29

Componentes monocíclicos do cancro cítrico no sistema Xanthomonas axonopodis pv. citri-limão Tahiti- Phyllocnistis citrella, sob condições controladas. / Monocyclic components of the asiatic citrus canker in the system: Xanthomonas axonopodis pv. citri-tahiti lime- Phyllocnistis citrella, under controlled conditions.

Rock Seille Carlos Christiano 29 January 2004 (has links)
O Cancro Cítrico (CC), causado por Xanthomonas axonopodis pv. citri ( Xac) é uns dos mais graves problemas fitossanitário da citricultura paulista. A partir da introdução da Lagarta Minadora dos Citros (LMC), Phyllocnistis citrella, o comportamento do CC mudou drasticamente, tornando-se mais severo. Para compreender a interação de Xac e da LMC em Limão Tahiti foram conduzidos, em condições controladas, três experimentos: (A) influência da via de penetração de Xac (estômato, ferimento mecânico e injúria de LMC das fases ovo, 1º ínstar, 3º ínstar e pupa) e das concentrações de inóculo de 10 1 , 10 2 , 10 4 e 10 6 UFC/mL na infecção de Xac; (B) efeito da idade do ferimento mecânico, da injúria de LMC e da folha intacta no progresso do CC; (C) influência da temperatura e do período de molhamento no desenvolvimento do CC. No experimento A, a concentração mínima de inóculo para causar CC via penetração de Xac por estômato foi de 10 4 UFC/mL; 10 2 UFC/mL para via ferimento mecânico e injúria de LMC na fase ovo e 1º ínstar; e 10 1 UFC/mL para via injúria fase 3º ínstar e pupa. A injúria da fase 3º ínstar e pupa proporcionaram maior severidade em relação às outras vias de penetração nas concentrações testadas (aproximadamente 6 vezes maior que a severidade em folha intacta a 10 6 UFC/mL). As severidades em folha com ferimento mecânico e com injúria da fase ovo e 1º ínstar não diferiram da folha intacta. No experimento B, o ferimento mecânico entre 0 e 6 dias após o ferimento da folha (0 a 6 dias de idade), injúria de LMC entre 0 e 32 dias após a ovoposição de P. citrella na folha (0 a 32 dias de idade) e folha intacta entre 0 e 35 dias após a emissão da folha (0 a 35 dias de idade) foram suscetíveis a Xac. A severidade decresceu linearmente com o aumento da idade do ferimento e da folha intacta. A severidade, em relação à idade de injúria, variou em função do modelo Beta generalizado, com ponto de inflexão aos 18 dias. A máxima severidade estimada em folha com injúria foi 10 vezes maior que em folha intacta. No experimento C, observou-se que para os menores intervalos de aparecimento de lesões e 100% de incidência de CC, as condições ótimas foram de 25 a 35ºC com período mínimo de molhamento de 4 horas. O modelo Beta-monomolecular ajustou-se bem à variação da severidade em função da temperatura e da duração do molhamento foliar. As temperaturas mínima e máxima estimadas foram de 14,9 e 42ºC. A máxima severidade estimada foi determinada para o molhamento de 24 horas a 31,7ºC. Em geral, a injúria de LMC nas fases acima de 3º ínstar influenciou na infecção de Xac possibilitando infecções mesmo em baixas concentrações de inóculo (10 células/mL) e durante um longo período (32 dias). Em folhas com injúria de LMC, a severidade de CC pode ser 10 vezes maior que em folha intacta. As condições favoráveis para a infecção de Xac são de 25 a 35ºC e a bactéria não demanda longos períodos de molhamento foliar (acima de 4 horas). Por esses resultados, conclui-se que a LMC tem papel relevante na epidemiologia do CC. / The Asiatic Citrus Canker (ACC), caused by Xanthomonas axonopodis pv. citri ( Xac) is one of the most serious problems of citrus in São Paulo State, Brazil. After the introduction of Citrus Leafminer (CLM), Phyllocnistis citrella, the behavior of ACC changed drastically, becoming more severe. To understand the interaction of Xac and CLM on Tahiti Lime, it were, under controlled conditions, carried three experiments: (A) influence of the way of Xac penetration (stomata, mechanical wound and CLM injury of the stage: egg, 1st instar, 3rd instar and pupa) and of the inoculum concentrations of 10 1 , 10 2 , 10 4 and 10 6 CFU/mL in the Xac infection; (B) effect of the age of mechanical wound, of CLM injury and of unwounded leaf in the progress of the ACC; (C) influence of the temperature and of the period of leaf wetness in the development of the ACC. In the experiment A, the minimum inoculum concentration to cause ACC by penetration of Xac through stomata was of 10 4 CFU/mL; 10 2 CFU /mL by mechanical wound and CLM injury of egg stage and 1st instar; and 10 1 CFU /mL by injury of 3rd instar and pupa stage. The injury of 3rd instar and pupa stage have generated higher severity in relation to other ways of penetration on all concentrations (about 6 times more than the severity in unwounded leaf on 10 6 CFU /mL). The severities in leaf with mechanical wound and with injury of egg stage and 1st instar have not differed from the unwounded leaf. In the experiment B, the mechanical wound between 0 and 6 days (0-6 days of age), the CLM injury between 0 and 32 days after eggs laying of P. citrella (0-32 days of age) and unwounded leaf between 5 and 35 days (5-35 days of age) have shown susceptibility to Xac. The severity decreased linearly with increasing age of the wound and age of unwounded leaf. In relation to age of injury, the severity varied in function of generalized Beta model and the inflection point was 18 days. The maximum severity in leaf with injury was 10 times bigger than in unwounded leaf. In the experiment C, the optimum conditions appearance of lesions and 100% of incidence were 25-35ºC under minimum wetness duration of 4 hours. The Beta-monomolecular function provided a good description of severity variation in relation to the temperature and duration of leaf wetness. The estimated minimum and maximum temperatures were 14.9 and 42ºC. The estimated maximum severity was determined under wetness of 24 hours and 31.7ºC. In general, the LMC injury (up to 3rd instar stage) has influenced in the Xac infection, it has increased the efficiency of bacterium penetration still on low inoculum concentration and it has allowed Xac infection for long period (32 days). In leaf with CLM injury, the severity can be 10 times bigger than in unwounded leaf. The Xac infection is favored under 25-35ºC and the Xac does not demand long periods of leaf wetness (more than 4 hours).
30

Identification of Ty3gypsy-like sequences in A. thaliana, L. sativa, Lycopersicon, and Z. mays

Leclerc-Potvin, Carole. January 1996 (has links)
No description available.

Page generated in 0.1404 seconds