• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental measurements in a multipole discharge : application to H'- production

Hopkins, Michael Brendan January 1987 (has links)
No description available.
2

Absorption spectroscopy in near LTE plasmas

Davidson, Stephen John January 1993 (has links)
No description available.
3

Studies of laser generated plasmas relevant to soft X-ray laser research

Corbett, Richard Ewing January 1987 (has links)
No description available.
4

Picosecond Electric Field CARS; A Diagnostic Technique to Measure the Electric Field Development within Nanosecond Repetitively Pulsed Plasmas

Goldberg, Benjamin M. 18 December 2012 (has links)
No description available.
5

Optical diagnostics of laser plasmas

Pedregosa Delserieys, Alice 18 February 2008 (has links) (PDF)
See english abstract
6

Influence of the Precursor on the Synthesis Mechanisms of Primary Amine-based Plasma Polymers: From Plasma Diagnostic to Film Chemistry and Applications

Denis, Laurent 17 December 2009 (has links)
Primary amine-based plasma polymer films (PPF) attract an increasing interest due to their potential applications as platforms to support cell growth and biomacromolecule immobilization. It has been demonstrated that the biological response of these films is correlated to their primary amine content (%NH2). Control and optimization of the process are thus very important requirements. However, despite the abundant literature related to this attractive technology, plasma polymerization remains very complex so that strong efforts are still needed to understand the relationship between the plasma chemistry and the PPF characteristics. The main part of this work describes the pulsed plasma polymerization of two isomeric precursors, namely allylamine and cyclopropylamine, with the aim to study the influence of the precursor on the plasma and the PPF physico-chemistries. The systems have been compared in similar conditions of mean power injected in the discharge (Pmean). Both experimental and theoretical approaches have been used to shed light on the process. Taking into account the electron energy in the plasma, differences between allylamine and cyclopropylamine plasma chemistries have been rationalized with the help of Density Functional Theory calculations. It is demonstrated that %NH2 can be increased by an appropriate choice of the precursor and the experimental conditions. Indeed, the use of cyclopropylamine can yield to PPF with a larger %NH2 compared to allylamine due to a preferential opening of the ring structure in the plasma. A method is also proposed to discriminate the PPF according to their cross-linking density (÷). While it appears to be independent of the chemical structure of the precursor, ÷ is observed to significantly vary with Pmean. The PPF have further been investigated with the aim to better understand the phenomena taking place when immersed in liquid medium, an essential step for biological applications. The results show that the decrease in the PPF thickness (Äd), conventionally observed upon immersion, directly depends on Pmean; the higher Pmean, the lower Äd. For the first time to our knowledge, the present work allows to unambiguously attribute this phenomenon to an increase of ÷ with Pmean. Furthermore, thanks to the analysis of the resulting solutions, the data give a new insight into the PPF behavior in liquid medium, suggesting that Äd is mostly related to a reorganization of the PPF network and not to material dissolution as usually claimed. Finally, some preliminary experiments indicate that the PPF can be used to support muscle cell culture; the performances of the PPF-coated materials reveal to be at least similar to those of the standard surfaces.
7

Measurements of electric fields in a plasma by Stark mixing induced Lyman-α radiation

Ström, Petter January 2013 (has links)
This paper treats a non-intrusive method of measuring electric fields in plasmas and other sensitive or hostile environments. The method is based on the use of an atomic hydrogen beam prepared in the metastable fine structure quantum state 2s1/2. Interaction with the field that is to be measured causes Stark mixing with the closely lying 2p1/2, whose spontaneous decay rate is much higher than that of 2s1/2. As a result, the total transition rate to the ground state and consequently the intensity of the Lyman-α line (121.6nm) is increased. Observations of emitted radiation from a region in which the interaction takes place are used to draw conclusions about the electric field, effectively providing a way to measure it. In the first section, the theory behind the method is described, using time dependent perturbation theory and taking into account both Lamb shift and hyperfine structure. A description of the set-up that we have used to test the theoretical predictions follows and practical aspects related to the operation of the experiment are briefly addressed. Measurements of the dependence of the Lyman-α intensity on both electric field frequency and amplitude are presented and shown to be in agreement with theory. These measurements have been performed in vacuum and in an argon plasma, both for static and RF fields. Two mechanisms, labeled oscillatory and geometrical saturation, that decrease the emitted intensity for strong fields are identified and described, and both are of importance for the future implementation of the studied diagnostic in a fusion device or other plasma experiment. Studies of the field profiles between a pair of electrically polarized plates have been carried out and algorithms for relating measured data to actual values of electric field strength have been developed. For static fields in vacuum, collected data is compensated for geometrical saturation and the resulting profiles are compared to those calculated with a finite element method. Good correspondence is seen in many cases, and where it is not, the discrepancies are explained. Static profile measurements in a plasma show the formation of a sheath whose thickness has been studied while varying discharge current, pressure and plasma frequency. The qualitative dependence of the sheath thickness on these parameters is in accordance with well established theory. When it comes to RF fields, a possible standing wave pattern is detected in the plasma despite problems with low signal to noise ratio. In order to optimize the working conditions of the set-up, effects of charge accumulation due to ions present in the hydrogen beam have been studied as well as errors due to residual particle fluxes during the off-phase when pulsing the beam. A conceptual design suggestion for implementing the method in the edge plasma of a tokamak or another similar device, based on the collected information, is also given.
8

Radial transport and detachment in the University of Manchester linear system

Trojan, Lorenzo January 2010 (has links)
The role of cross field transport and volume recombination are of vital importance for a satisfactory understanding of the plasma edge in magnetically confined devices such as a Tokamak. Plasma fluctuations may travel cross field with significant velocities and play a central role in plasma transport. Cross field transport has been seen to be anomalous in most devices under a very broad range of experimental conditions. In recent years a clear indication of the relation between fluctuation, cross field particle transport and recombination has been reported.The University of Manchester Linear System (the ULS) has been used to observe the Balmer emission of the recombining plasma interacting with a dense neutral Hydrogen gas. The ULS is a device made of a cylindrical vacuum vessel 1.5 m long and 15 cm in radius. The plasma is formed in a separate chamber by a duoplasmatron source in the Demirkhanov configuration; the arc current was limited to 15 A and the potential drop was 100 V. The device is surrounded by a linear solenoid which was used to magnetize the plasma. The highest magnetic field was .1 T. Typical electron temperature in the device spans .1 to 10 eV, and the density 1. E+16 to 5. E+19.Diagnostic includes Langmuir probe and visible spectrometers. In addition, the DivCam imaging system originally designed and built to obtain 2D images of the MAST spherical Tokamak Scrape Off Layer, was used. The DivCam imaging system has enabled to obtain high resolution images of the plasma emission when interacting with the neutral gas. It appears evident that the Electron-Ion Recombination is strongly dependent upon radial transport of plasma particles: light emission attributed to EIR is only observed at a large cross field distance from the plasma source. Moreover, fast imaging of the plasma has also shown the presence of a plasma filament forming and propagating crossfield at the same region of the plasma where the EIR light is observed.To interpret the experimental observations obtained with DivCam, the OSM 1D fluid plasma solver and the EIRENE neutral Monte Carlo solver have been implemented in the linear geometry of the ULS linear system. Both the OSM and the EIRENE solvers were originally intended for tokamak and large magnetic confinement devices. Modelling of the EIR emissivity in the ULS device has demonstrated the importance of the inclusion of turbulent and blob transport in the model to obtain reasonable agreement between the observations and the theoretical predictions. The central density of the plasma filament has been estimated to be approximately .7 E+19 m-3 using EIRENE results.The emission attributed to hydrogenic ions (negative atomic H- and positive molecular ions H2+) and related to Molecular Assisted Recombinations can be estimated within EIRENE using the AMJUEL database. The database provides ion population estimations for three different collisional regimes: in the first regime a large population of vibrational excited hydrogen molecules are assumed to exist within the plasma volume; the second assumes strong Charge Exchange reactions and not vibrational excited molecule; the third assumes electron impact collisions with ground states molecule to be the only ion source. A reasonable agreement between the observations and the EIRENE prediction is only found when using the third estimation suggesting that molecular excitation and charge exchange processes are relatively unimportant under the experimental conditions considered.
9

Helium charge exchange recombination spectroscopy on Alcator C-Mod Tokamak

Liao, Kenneth Teh-Yong 30 June 2014 (has links)
The Wide-View Charge Exchange Recombination Spectroscopy (CXRS) diagnostic at Alcator C-Mod, originally designed for measurement of boron, has been modified to fit several different roles. By measuring the He¹⁺ (n = 4 [rightwards arrow] 3) emission line at 4686Å and surrounding spectra, we can measure ⁴He and ³He density, temperature, and velocity profiles and use this information to study turbulent impurity transport. The transport is characterized using a standard ansatz for the radial particle flux: [mathematical equation]. This effort is designated He CXRS. Also, direct measurement of ³He are used to test models of Ion Cyclotron Resonance Heating (ICRH). We look for evidence of fast ion production and the effect of the minority ion profile on fast wave heating. Several modifications were made to the hardware. Light is collected via two optical arrays: poloidal and toroidal. The toroidal array has been upgraded to increase throughput and spatial resolution, increasing the number of toroidal channels from 10 to 22. A new protective shroud was installed on the poloidal array. Additional diagnostics (a 11 channel beam duct view, neutralizer view, duct pressure monitor) were added to the Diagnostic Neutral Beam to improve DNB modeling for CXRS. This work includes investigation of plasmas where helium is at low concentration (<1%), acting passively, as well as scenarios with a large fraction (>~20%). Using the STRAHL code, time-dependent helium density profiles are used to obtain anomalous transport parameters. Thermodiffusion and curvature pinch terms are also estimated from experimental scaling studies. Results are compared with neoclassical results from the NCLASS code and calculations by the GENE gyrokinetic code. Another focus is verification of power deposition models which are crucially dependent on minority ion density, for which ³He is used. At low ³He fraction, direct absorption by ³He generates fast ions with anisotropic velocity-space distribution functions. At high ³He fraction, mode conversion heating of electrons is dominant. The minority distribution function and predicted wave deposition are simulated using AORSA and CQL3D. This work provides the first measurements of helium transport on C-Mod and expands our understanding of helium transport and fast wave heating. / text
10

Oxydation par plasma électrolytique : influence des paramètres du procédé sur le comportement des micro-décharges et conséquences sur les couches d’oxydes / Plasma electrolytic oxidation : influence of the process parameters on the behaviour of the micro-discharges and resulting effects on the oxide layer characteristics

Melhem, Amer 01 December 2011 (has links)
L’oxydation par plasma électrolytique (ou oxydation micro-arc) est un procédé de traitement des alliages légers (Al, Mg, V, Ti, etc.) apte à pallier les limites de l’anodisation, en particulier au regard des contraintes environnementales. Bien que connu depuis de nombreuses années, les mécanismes sous-jacents à ce procédé assisté par des micro-décharges restent peu ou mal compris. L’objectif de ce travail est de cerner les mécanismes de formation et de développement des micro-décharges et d’associer leurs caractéristiques aux propriétés des couches d’oxyde élaborées sur l’alliage d’aluminium Al2214.La démarche adoptée consiste à associer étroitement l'étude des micro-décharges, la caractérisation des couches élaborées, et les mécanismes de claquage de la couche d'oxyde en cours de croissance. A l’aide de moyens originaux de vidéo rapide (> 125 000 images/s) et d'ombroscopie, la dépendance de l’évolution des micro-décharges aux paramètres macroscopiques du procédé a clairement été établie. L’importance de la présence et de la position de contre-électrodes a été mise en évidence et étudiée. Il est également montré que le choix judicieux de la fréquence et de la densité de courant anodique améliore la qualité des couches obtenues. Une fréquence de l’ordre du kHz semble la mieux appropriée.Enfin, à partir de mesures synchrones, un retard à l’apparition des micro-décharges par rapport au front montant des impulsions de courant a été mis en exergue. Très sensible aux paramètres du procédé, ce retard est probablement lié aux mécanismes de claquage de la couche d'oxyde isolante. Des scénarios concernant ces mécanismes ont ainsi été proposés. / Plasma electrolytic oxidation is a surface treatment process applied to light weight alloys (Al, Mg, V, Ti, etc.) which may advantageously replace conventional anodizing, especially regarding environmental issues. Though this process has been known for many years, the underlying mechanisms that govern this micro-discharge assisted process remain poorly understood. This work aims at better identifying the breakdown and development mechanisms of the micro-discharges and at correlating the micro-discharge characteristics to the properties of the layers grown onto Al2214 aluminium alloy samples. The approach consists in coupling the study of the micro-discharges, the characterization of the grown layers and the breakdown mechanisms. By means of high rate video recording (> 125 000 frames/s) and shadowgraph techniques, the dependence of the evolution of the micro-discharges with the macroscopic process parameters has been clearly established. The important role of counter-electrodes and their respective position with respect to the sample have been identified and studied. It is also shown that the suitable choice of current frequency and anodic current density may greatly improve the quality of the resulting oxide layers. Current frequency in the kHz range seems most appropriate to grow thick and defect-free homogeneous layers.Finally, from synchronous measurements, it has been pointed out a delay in the onset of micro-discharges with respect to the rising edge of the current pulses. Besides this delay is strongly sensitive to the process parameters, it is probably related to the breakdown mechanisms of the insulating layer. Scenarios for these mechanisms have been proposed.

Page generated in 0.0775 seconds