• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rock Strength Testing of Drill Core Samples From Kiirunavaara Below Level 1365 / Berghållfasthetsprovning av borrkärnprover frånKiirunavaara under nivå 1365 i Kiruna, norra Sverige

Doulamis, Giorgios January 2022 (has links)
The geotechnical parameters of the different lithologies are of great importance regarding mining, infrastructures development and safety. The main aims of this thesis project are the evaluation of the previously acquired point load tests (PLT) data and the acquisition of a larger set for the various lithologies and alterations. In addition, the correlation to the Leeb Hardness test (LHT) method, and the determination of correlation factors (K) for estimating the uniaxial compressive strength (UCS) index from PLT data for various lithologies were evaluated. In total, 5236 previously PL tested samples, 1113 newly PL tested samples and 569 LHT measurements were obtained. The results showed that the highest values come from the footwall lithologies (Sp) ranging between 11-19 MPa, while the hanging wall lithologies (Qp) fall in range 10-14 MPa and the different ore types between 6-11 MPa. The correlation between PLT and LHT was poor, with the results completely overlapping for all country rock lithologies in the range 800-900 LHD, while the ore types fall in the range 600-700, and anhydrite at 500 LHD. On the other hand, the correlation factors K for the lithologies tested vary between 13-20 for the weaker and more altered rock types and 25-30 for the stronger ones, correlating well when compared to the actual UCS values found in the literature. In conclusion, it is evident that the LHT is not able to substitute the PLT as it captures different properties of the rock. The conversion from PLT to UCS gave rather accurate results, with slightly different correlation factors K for the tested lithologies.
2

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth

Aderibigbe, Aderonke 2012 May 1900 (has links)
The role of surface chemical effects in hydraulic fracturing of shale is studied using the results of unconfined compression tests and Brazilian tests on Mancos shale- cored at depths of 20-60 ft. The rock mineralogy, total organic carbon and cation exchange capacity were determined in order to characterize the shale. Adsorption tests to study the interaction of the shale and aqueous fluid mixture were also carried out using surface tension measurements. The uniaxial compressive strengths and tensile strengths of individual shale samples after four hours exposure to water, 2.85 x 10^-3 M cationic surfactant (dodecyltrimethylammonium bromide-DTAB) and 2.81 x 10^-3 M anionic surfactant (sodium dodecylbenzenesulfonate-SDBS) were analyzed using ANOVA and Bonferroni tests. These mechanical strengths were largely reduced on exposure to the aqueous environments studied, despite the relatively low clay and low swelling clay content of the Mancos shale. Further comparison of the uniaxial compressive strengths and tensile strengths of the shale on exposure to water, to the strengths when exposed to the surfactant solutions showed that their difference was not statistically significant indicating that exposure to water had the greatest effect on strength loss. The surface tension measurement of 2.85 x 10^-4 M DTAB and 2.81 x 10^-4 M SDBS solutions before and after equilibration with shale showed about 80% increase in surface tension in the DTAB solution and 10% increase in surface tension in the SDBS solution. The probable sorption mechanism is electrostatic attraction with negatively charged sites of the shale as shown by significant loss of the cationic surfactant (DTAB) to the shale surface, and the relatively minor adsorption capacity of the anionic surfactant (SDBS). Although these adsorption tests indicate interaction between the shale and surfactant solutions, within the number of tests carried out and the surfactant concentration used, the interaction does not translate into a significant statistical difference for impacts of surfactants on mechanical strength of this shale compared to the impact of water alone. The relevance of this work is to facilitate the understanding of how the strength of rock can be reduced by the composition of hydraulic fracturing fluids, to achieve improved fracture performance and higher recovery of natural gas from shale reservoirs.
3

Numerical Investigation of Rock Support Arches

Rentzelos, Theofanis January 2019 (has links)
The Garpenberg mine, owned by the Boliden Mining group, has established a trial area at Dammsjön orebody in order to examine the possibility of increasing the productivity of the mine. The mine uses the rill mining method with a current rill height of 15 m. In order to increase the productivity, the mine is examining the possibility of increasing the height of the rill. The trial area is located at 882 m depth surrounded by dolomite on the hangingwall and quartzitic rock on the footwall side. Rock support arches have been installed, in addition to the regular support pattern, to test their effectiveness on stabilizing the ground around the drifts. The arches have been installed in every 6 m and every 3 m in different parts of the test area. Rock samples from the trial area were brought to the university laboratory for testing. The data gathered from the laboratory tests along with the data from the monitoring of the trial area were used to develop a calibrated numerical model. A three-dimensional (3-D) model was therefore created, by using the FLAC3D numerical code. After the calibration of the model a parametric study was conducted for different rill heights and different arch spacing to investigate the performance of the arches. Specifically, the case of no arch installation along with the cases of an installed arch every 6 m and 3 m were tested, for the rill heights of 15 m, 20 m, 25 m and 30 m. The study concluded that the arches assisted in reducing the ground convergence in the production drift. The results also showed that the total height of the rill bench yields regardless of its height. After the yielding, the rockmass can no longer support itself and caves under its own weight. The larger the rill height, the larger the volume of loose rock that has to be supported and thus, higher the convergence. Furthermore, it was also observed that, significant amount of convergence in the production drift occurred during the drifting of the top drive and less during the stoping of the rill bench. This indicates that, the timely installation of the arches is an important criterion for their performance.

Page generated in 0.0737 seconds