• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Valeurs extrêmes de mosaïques aléatoires

Chenavier, Nicolas 11 December 2013 (has links) (PDF)
Une mosaïque aléatoire est une partition aléatoire de l'espace euclidien en des polytopes appelés cellules. Ce type de structure apparaît dans divers domaines tels que la biologie cellulaire, les télécommunications et la segmentation d'images. Beaucoup de travail a déjà été effectué sur la cellule typique c'est-à-dire sur une cellule "choisie uniformément". Cependant, ces travaux ne tiennent pas compte de l'irrégularité de la mosaïque et d'éventuelles cellules pathologiques (par exemple, celles qui sont anormalement allongées ou anormalement grandes). Dans cette thèse, on étudie les mosaïques aléatoires par une approche inédite: celle des valeurs extrêmes. En pratique, on observe la mosaïque aléatoire dans une fenêtre et on considère une certaine caractéristique géométrique (comme le volume, le nombre de sommets ou le diamètre des cellules). Le problème de base est d'étudier le comportement du maximum et du minimum, voire des statistiques d'ordre, de cette caractéristique pour toutes les cellules de la fenêtre lorsque la taille de celle-ci tend vers l'infini. Une telle approche permet non seulement de mieux comprendre la régularité de la mosaïque mais aussi d'étudier la qualité d'une approximation discrète d'un ensemble par des cellules d'une mosaïque aléatoire. Cette approche pourrait également fournir une piste inédite pour discriminer les processus ponctuels. Les résultats de cette thèse portent principalement sur des théorèmes limites des extrêmes et des statistiques d'ordre pour diverses caractéristiques géométriques et diverses mosaïques aléatoires. En particulier, on obtient des vitesses de convergence en établissant de fines estimations géométriques. On déduit de l'étude du maximum des diamètres une majoration de la distance de Hausdorff entre un ensemble et son approximation dite de Poisson-Voronoï. On traite, notamment, de plusieurs aspects géométriques comme les problèmes de bord et la forme des cellules optimisantes. Enfin, dans le but de savoir comment se répartissent les cellules excédentes (celles dont la caractéristique est grande), on s'intéresse à la convergence de processus ponctuels associés et à la taille moyenne d'un cluster d'excédents. Les outils utilisés sont issus à la fois de la géométrie aléatoire (mesure de Palm, probabilités de recouvrement, formule de Slivnyak) et de la théorie des valeurs extrêmes (graphes de dépendance, méthode de Chen-Stein, indice extrême).
2

De nouveaux résultats sur la géométrie des mosaïques de Poisson-Voronoi et des mosaïques poissoniennes d'hyperplans. Etude du modèle de fissuration de Rényi-Widom

Calka, Pierre 05 December 2002 (has links) (PDF)
Cette thèse traite de trois modèles de géométrie aléatoire: les mosaïques de Poisson-Voronoi, les mosaïques poissoniennes d'hyperplans et le modèle de fissuration unidirectionnel de Rényi-Widom. Nous montrons tout d'abord l'équivalence entre les deux approches historiques pour l'étude statistique des mosaïques: la convergence des moyennes ergodiques et la définition au sens de Palm de la cellule typique. Nous donnons ensuite en dimension deux la loi du nombre de sommets de la cellule typique et conditionnellement à ce nombre, les lois des positions des frontières, de l'aire et du périmètre. De plus, nous explicitons la loi conjointe des rayons des disques centrés en l'origine inscrit dans (resp. circonscrit à) la cellule typique et nous en déduisons le caractère circulaire des "grandes cellules". Dans le cas Poisson-Voronoi, nous relions en toute dimension la fonction spectrale de la cellule typique au pont brownien, ce qui permet en particulier d'estimer asymptotiquement la loi de la première valeur propre en dimension deux. Dans le cas des mosaïques poissoniennes d'hyperplans, nous exploitons les techniques de Palm pour en déduire une construction explicite en toute dimension de la cellule typique à partir de sa boule inscrite et de son simplexe circonscrit. Une preuve rigoureuse d'un résultat de R. E. Miles lorsqu'on épaissit les hyperplans est également donnée. Par ailleurs, nous modélisons un phénomène de fissuration par un processus unidimensionnel stationnaire dont nous calculons la loi de la distance inter-fissures typique. Nous montrons en outre que les points successifs sont ceux d'un processus de renouvellement conditionné explicite.

Page generated in 0.0499 seconds