• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The statistical mechanics of adsorbed polymers

Barford, William January 1987 (has links)
No description available.
2

Topological Constraint on Chain-Folding Structure of Semicrystalline Polymer

Wang, Kun 26 July 2019 (has links)
No description available.
3

Conformation of 2-fold Anisotropic Molecules Confined on a Spherical Surface

Zhang, Wuyang January 2012 (has links)
Anisotropic molecules confined on a spherical or other curved surface can display coupled positional and orientational orderings, which make possible applications in physics, chemistry, biology, and material science. Therefore, controlling the order of such system has attracted much attention recently. Several distinct conformations of rod-like or chain-like molecules confined on a spherical surface have been predicted, including states such as tennis-ball, rectangle, and cut-and-rotate splay. These conformations have four +1/2 defects and are suggested to dominate over the splay conformation that has two +1 defects. For the purpose of investigating the conformations of 2-fold anisotropic molecules confined on the spherical surface, the author of this thesis utilizes the Onsager model to study the system of rigid rods and conducts Monte Carlo simulations on the bead-bond model to research the system of semiflexible polymer chains. At low surface coverage density, no particular pattern of the molecules would form. However, coupled positional and orientational ordering begins to emerge beyond a transition density. On the basis of the numerical solutions of the Onsager model of rigid rods, the splay conformation is shown to be the only stable state. On the other hand, Monte Carlo simulations on a polymer system indicate that the ordered state always accompanies the tennis-ball symmetry. With comparison to the continuous isotropic-nematic transition of a fluid of hard rods embedded in a flat two-dimensional space, the disorder-order transition for both the system of rigid rods and the system of polymer chains confined on the spherical surface has first-order phase-transition characteristics.
4

Conformation of 2-fold Anisotropic Molecules Confined on a Spherical Surface

Zhang, Wuyang January 2012 (has links)
Anisotropic molecules confined on a spherical or other curved surface can display coupled positional and orientational orderings, which make possible applications in physics, chemistry, biology, and material science. Therefore, controlling the order of such system has attracted much attention recently. Several distinct conformations of rod-like or chain-like molecules confined on a spherical surface have been predicted, including states such as tennis-ball, rectangle, and cut-and-rotate splay. These conformations have four +1/2 defects and are suggested to dominate over the splay conformation that has two +1 defects. For the purpose of investigating the conformations of 2-fold anisotropic molecules confined on the spherical surface, the author of this thesis utilizes the Onsager model to study the system of rigid rods and conducts Monte Carlo simulations on the bead-bond model to research the system of semiflexible polymer chains. At low surface coverage density, no particular pattern of the molecules would form. However, coupled positional and orientational ordering begins to emerge beyond a transition density. On the basis of the numerical solutions of the Onsager model of rigid rods, the splay conformation is shown to be the only stable state. On the other hand, Monte Carlo simulations on a polymer system indicate that the ordered state always accompanies the tennis-ball symmetry. With comparison to the continuous isotropic-nematic transition of a fluid of hard rods embedded in a flat two-dimensional space, the disorder-order transition for both the system of rigid rods and the system of polymer chains confined on the spherical surface has first-order phase-transition characteristics.
5

Studies on Conformational Characteristics and Self-Assembled Structures of Polymers in Space-Limited Systems / 空間制限系における高分子のコンホメーション特性と自己組織化構造に関する研究 / クウカン セイゲンケイ ニ オケル コウブンシ ノ コンホメーション トクセイ ト ジコ ソシキカ コウゾウ ニ カンスル ケンキュウ

SEKINE, Ryojun 23 July 2009 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14871号 / 工博第3139号 / 新制||工||1470(附属図書館) / 27293 / UT51-2009-K667 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 伊藤 紳三郎, 教授 長谷川 博一, 教授 金谷 利治 / 学位規則第4条第1項該当
6

Understanding Ionic Conductivity in Crystalline Polymer Electrolytes

Brandell, Daniel January 2005 (has links)
Polymer electrolytes are widely used as ion transport media in vital applications such as energy storage devices and electrochemical displays. To further develop these materials, it is important to understand their ionic conductivity mechanisms. It has long been thought that ionic conduction in a polymer electrolyte occurs in the amorphous phase, while the crystalline phase is insulating. However, this picture has recently been challenged by the discovery of the crystalline system LiXF6∙PEO6 (X=P, As or Sb) which exhibits higher conductivity than its amorphous counterpart. Their structures comprise interlocking hemi-helical PEO-chain pairs containing Li+ ions and separating them from the XF6- anions. The first Molecular Dynamics (MD) simulation study of the LiPF6∙PEO6 system is presented in this thesis. Although its conductivity is too low for most applications at ambient temperature, it can be enhanced by iso- and aliovalent anion doping. It is shown that the diffraction-determined structure is well reproduced on simulating the system using an infinite PEO-chain model. The Li-Oet coordination number here becomes 6 instead of 5; minor changes also occur in the polymer backbone configuration. The crystallographic asymmetric unit and diffraction profiles are also reproduced. On simulating a shorter-chain system (n=22), more resembling the real material, the structure retains its double hemi-helices, but the polymer adopts a more relaxed conformation, facilitating the formation of Li+-PF6- pairs. Infinite-chain simulation shows the ionic conduction to be dominated by anion motion, in contrast to earlier NMR results. The effects of doping are also reproduced. Shortening the polymer chain-length has the effect of raising the transport number for lithium, thereby bring it into better agreement with experiment. It can be concluded that it is critical to take polymer chain-length and chain-termination into account when modelling ionic conductivity mechanisms in crystalline polymer electrolytes.
7

Ordering in Crystalline Short-Chain Polymer Electrolytes

Liivat, Anti January 2007 (has links)
Polymer electrolytes are the most obvious candidates for safe "all-solid" Li-ion batteries and other electrochemical devices. However, they still have relatively poor ionic conductivities, which limits their wider adoption in commercial applications. It has earlier been the conventional wisdom that only amorphous phases of polymer electrolytes show usefully high ionic conduction, while crystalline forms are insulators. However, this has been challenged in the last decade by the discovery of highly organized, low-dimensional ion-conducting materials. Specifically, the crystalline phases of LiXF6.PEO6 exhibit higher ionic conductivities than their amorphous counterparts, with the Li-ion conduction taking place along the PEO channels. Polymer chain-length and chain-end registry has emerged as potentially significant in determining ionic conduction in these materials. Molecular Dynamics simulations have therefore been made of short-chain, monodisperse (Mw~1000), methoxy end-capped LiPF6.PEO6 to examine relationships between ion conduction and mode of chain-ordering. Studies of smectic and nematic arrangements of PEO chains have revealed that ion-transport mechanisms within the smectic planes formed by cooperative chain-end registry appear to be more suppressed by ion-pairing than in-channel conduction. Disorder phenomena in the chain-end regions emerge as a critical factor in promoting Li-ion migration across chain-gaps, as does the structural continuity of the PEO channels. Simulations incorporating ~1% aliovalent SiF62- dopants further suggest an increase in Li-ion conduction when the extra Li-ions reside within the PEO channels, with the anion influencing charge-carrier concentration through enhanced ion-pair formation. XRD techniques alone are shown to be inadequate in ascertaining the significance of the various short-chain models proposed; atomistic modelling is clearly a helpful complement in distinguishing more or less favourable situations for ion conduction. Though providing valuable insights, it must be concluded that this work has hardly brought us significantly closer to breakthroughs in polymer electrolyte design; the critical factors which will make this possible remain as yet obscure.
8

ANIONIC SYNTHESIS OF FUNCTIONALIZED POLYMERS

Janoski, Jonathan E. 01 December 2010 (has links)
No description available.
9

Vliv "zaplňovacích" činidel na interakce DNA-tenzid / Effect of crowding agents on DNA-surfactant interaction

Sovová, Šárka January 2017 (has links)
Tato diplomová práce se zabývá vlivem zaplňovacích činidel na interakce v systému DNA-tenzid. DNA o velikosti 4017 párů bází byla připravena polymerázovou řetězovou reakcí, jako templát byl použit plasmid pSB-E1g. Polyetylen glykol (PEG) byl použit jako zaplňovací činidlo a jeho vliv na DNA-tenzid interakce byl zkoumán experimenty založenými na fluorescenci a gelové elektroforéze. Také byl studován vliv iontové síly za použití NaBr na interakce DNA-tenzid za použití zaplňovacího činidla. Data byla vyhodnocena a evaluována v této práci. V úvahu byl brán i možný vliv polyetylen glykolu na kritickou micelarní koncentraci (CMC) tenzidu, bylo provedeno měření CMC pomocí ultrazvuku s vysokým rozlišením, avšak nebyl zjištěn žádný značný vliv zaplňovacího činidla na CMC tenzidu. Část této práce bude zahrnuta v publikaci s anglickým názvem Combined role of macromolecular crowding and cationic surfactant in efficient DNA condensation.
10

Multidimensional NMR Characterization of Polyvinylidene Fluoride (PVDF) and VDF-Based Copolymers and Terpolymers

Twum, Eric Barimah 14 May 2013 (has links)
No description available.

Page generated in 0.0454 seconds