Spelling suggestions: "subject:"polynômes orthogonal"" "subject:"polynômes orthogonale""
11 |
Applications des structures algébriques associées aux systèmes intégrablesBergeron, Geoffroy 07 1900 (has links)
Cette thèse en trois parties regroupe des travaux de recherches sous la thématiques des symétries sous-jacentes aux systèmes intégrables et des structures algébriques qui les encodent. Une première partie illustre comment les fonctions spéciales que sont les polynômes orthogonaux apparaissent dans la théorie de la représentation des diverses structures algébriques associées à des symétries. La seconde partie se concentre sur une généralisation algébrique de l'opérateur de Heun classique menant à de nouvelles structures algébriques qui trouvent des applications en traitement de signal et dans l'étude des systèmes intégrables. La dernière partie concerne l'élaboration d'un cadre théorique dans le langage de la théorie de l'information algorithmique permettant de poser une définition mathématique de la notion d'émergence. / This thesis in three parts groups research work under the theme of the symmetries underlying integrable systems and the algebraic structures that encodes them. A first part illustrates how orthogonal polynomials, a type of special function, appear in the representation theory of various algebraic structures associated to symmetries. The second part focuses on an algebraic generalization of the classical Heun operator that leads to new algebraic structures with applications in signal processing and in the study of integrable systems. The last part concerns the formulation of a framework in the language of algorithmic information theory the enables a mathematical definition for the notion of emergence.
|
12 |
Special functions of Weyl groups and their continuous and discrete orthogonalityMotlochova, Lenka 04 1900 (has links)
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <<cubature>>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques. / This thesis presents several properties and applications of four families of Weyl group orbit functions called $C$-, $S$-, $S^s$- and $S^l$-functions. These functions may be viewed as generalizations of the well-known Chebyshev polynomials. They are related to orthogonal polynomials associated with simple Lie algebras, e.g. the multivariate Jacobi and Macdonald polynomials. They have numerous remarkable properties such as continuous and discrete orthogonality. In particular, it is shown that the $S^s$- and $S^l$-functions characterized by certain parameters are mutually orthogonal with respect to a discrete measure. Their discrete orthogonality allows to deduce two types of Fourier-like discrete transforms for each simple Lie algebra with two different lengths of roots. Similarly to the Chebyshev polynomials, these four families of functions have applications in numerical integration. We obtain in this thesis various cubature formulas, for functions of several variables, arising from $C$-, $S^s$- and $S^l$-functions. We also provide a~complete description of discrete multivariate cosine transforms of types V--VIII involving the Weyl group orbit functions arising from simple Lie algebras $C_n$ and $B_n$, called antisymmetric and symmetric cosine functions. Furthermore, we study four families of multivariate Chebyshev-like orthogonal polynomials introduced via (anti)symmetric cosine functions.
|
13 |
Sur les tests lisses d'ajustement dans le context des series chronologiquesTagne Tatsinkou, Joseph Francois 12 1900 (has links)
La plupart des modèles en statistique classique repose sur une hypothèse sur
la distribution des données ou sur une distribution sous-jacente aux données. La
validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles
de confiance ou encore de tester la fiabilité du modèle. La problématique
des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de
l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons
des tests d’ajustement à la loi normale dans le cadre des séries chronologiques
univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques
linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA
ou VARMA dans le cas vectoriel).
Dans un premier temps, au cas univarié, nous proposons une généralisation du
travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est
inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement
utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous
avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis
(1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du
paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de
la matrice des variances et des covariances de la statistique de test à partir de
certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la
moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode
de sélection de la dimension de la famille d’alternatives de type AIC, et nous
étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est
basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes
de Legendre.
Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement
pour les modèles autorégressifs à moyenne mobile avec une paramétrisation
structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes
particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le
test que nous proposons s’applique à une famille quelconque de fonctions orthogonales.
Nous illustrons cela dans le cas particulier des polynômes de Legendre
et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons
que le test obtenu est invariant aux transformations affines et qu’il est en fait
une généralisation de nombreux tests existants dans la littérature. Ce projet peut
être vu comme une généralisation du premier dans trois directions, notamment le
passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions
orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes
dans la formulation VARMA.
Nous avons procédé dans chacun des projets à une étude de simulation afin
d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer
aux tests existants. De plus des applications aux données réelles sont fournies.
Nous avons appliqué les tests à la prévision de la température moyenne annuelle
du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail
canadien (bivarié).
Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne,
Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un
article basé sur le premier projet est également soumis dans une revue avec comité
de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)). / Several phenomena from natural and social sciences rely on distribution’s assumption
among which the normal distribution is the most popular. The validity
of that assumption is useful to setting up forecast intervals or for checking model
adequacy of the underlying model. The goodness-of-fit procedures are tools to
assess the adequacy of the data’s underlying assumptions. Autoregressive and moving
average time series models are often used to find the mathematical behavior
of these phenomena from natural and social sciences, and especially in the finance
area. These models are based on some assumptions including normality distribution
for the innovations. Normality assumption may be helpful for some testing
procedures. Furthermore, stronger conclusions can be drawn from the adjusted
model if the white noise can be assumed Gaussian. In this work, goodness-of-fit
tests for checking normality for the innovations from autoregressive moving average
time series models are proposed for both univariate and multivariate cases
(ARMA and VARMA models).
In our first project, a smooth test of normality for ARMA time series models
with unknown mean based on a least square type estimator is proposed.
We derive the asymptotic null distribution of the test statistic. The result here
is an extension of the paper of Ducharme et Lafaye de Micheaux (2004), where
they supposed the mean known and equal to zero. We use the least square type
estimator proposed by Brockwell et Davis (1991, section 10.8) and we provide a
rigorous proof that it is almost surely convergent. We show that the covariance
matrix of the test is nonsingular regardless if the mean is known. We have also
studied a data driven approach for the choice of the dimension of the family and
we gave a finite sample approximation of the null distribution. Finally, the finite
and asymptotic sample properties of the proposed test statistic are studied via a
small simulation study.
In the second project, goodness-of-fit tests for checking multivariate normality
for the innovations from vector autoregressive moving average time series
models are proposed. Since these time series models may rely on a large number
of parameters, structured parameterization of the functional form is allowed. The
methodology also relies on the smooth test paradigm and on families of orthonormal
functions with respect to the multivariate normal density. It is shown that
the smooth tests converge to convenient chi-square distributions asymptotically.
An important special case makes use of Hermite polynomials, and in that situation
we demonstrate that the tests are invariant under linear transformations.
We observed that the test is not invariant under linear transformations with Legendre
polynomials. A consistent data driven method is discussed to choose the
family order from the data. In a simulation study, exact levels are studied and
the empirical powers of the smooth tests are compared to those of other methods.
Finally, an application to real data is provided, specifically on Canadian labour
market data and annual global temperature.
These works were exposed at several meeting (see for example Tagne, Duchesne
and Lafaye de Micheaux (2013a, 2013b, 2014) for more details). A paper
based on the first project is submitted in a refereed journal (see Duchesne, Lafaye
de Micheaux et Tagne (2016)).
|
14 |
Conception d'un système de transmission ultra-large bande par impulsions orthogonales / Design of the ultra-wideband transceiver based on pulse orthogonalTabaa, Mohamed 21 November 2014 (has links)
Dans cette thèse, nous proposons une méthodologie de conception d’architectures de communication dédiées aux réseaux de capteurs basées sur la technique de radio impulsionnelle pour les transmissions ultralarge bande (ULB). La technique impulsionnelle proposée ici repose sur la modulation de forme d’impulsion. L’approche de conception architecturale présentée dans cette thèse se focalise plus particulièrement sur la forme des impulsions et leur génération, qui revêt un intérêt majeur puisqu’elle constitue le support de l’information échangée. L’étude sur le choix de la forme d’impulsion nous a conduit à proposer deux architectures différentes. Une première architecture repose sur les polynômes orthogonaux, et plus particulièrement sur les polynômes d’Hermite, pour la génération des impulsions, et sur une architecture de corrélation pour la détection et la reconnaissance des trains d’impulsions transmis. La deuxième architecture est basée sur la transformée en paquets d’ondelettes discrète et peut être exploitée selon deux modes d’utilisation différents, mono et multiutilisateurs. L’utilisation d’une architecture de synthèse à l’émission et d’analyse à la réception ouvre une nouvelle orientation pour les communications numériques, permettant à la transformée en ondelettes d’assurer à la fois la génération des impulsions à l’émission et leur reconnaissance à la réception. Un intérêt immédiat de la technique proposée permet notamment de faciliter l’accès multiutilisateurs au canal ultralarge bande, et d’autoriser des communications simultanées (Many-to-one, des nœuds vers le puits) ou du broadcast (One-to-many, du puits vers les nœuds) sans surcharger la couche MAC. L’architecture proposée s’inscrit donc à l’interface des couches PHY et MAC et permet de relâcher les contraintes de conception spécifiques à ces couches / In this thesis, we propose a design methodology for communication architectures dedicated to wireless sensor network based on impulse radio techniques for UWB communications. The impulse technique proposed in this work relies on pulse shape modulation. The architecture design approach proposed in this thesis focuses on pulses shape and their generation, which is of major interest as it constitutes the carrier of the information exchanged. The study on the choice of pulse shape led us to propose two different architectures. The first one is based on orthogonal polynomials, more especially on the Hermite polynomials, for impulse generation, and on a correlation architecture for detection and recognition of transmitted impulses. The second architecture is based on discrete wavelet packet transform and can be used according two different modes, mono and multi-users. The use of both synthesis and analysis architectures for emitter and receiver, respectively, offers a new way for digital communications and allows the wavelet transform to ensure the impulses generation on the transmitter and their recognition on the receiver. A major interest point of the proposed technique is to facilitate the multi-users access to the ultra-wideband channel and to allow simultaneous communications (many-to-one, from the sensors to the sink) or broadcast (one-to-many, from the coordinator to the nodes) but without overloading the MAC layer. Hence, the proposed architecture is part of the interface between both PHY and MAC layers, and allows to release their specific design constraints
|
15 |
Combinatoire des opérateurs non-commutatifs et polynômes orthogonaux / Combinatorics of noncommutative operators and orthogonal polynomialsHamdi, Adel 20 September 2012 (has links)
Cette thèse se divise en deux grandes parties, la première traite la combinatoire associée à l’ordre normal des opérateurs non-commutatifs et la seconde aborde des distributions symétriques du nombre de croisements et du nombre d’emboîtements, respectivement k-croisements et k-emboîtements, dans des structures combinatoires (partitions, permutations, permutations colorées, …). La première partie étudie l’ordre normal des opérateurs en termes de placements de tours. Nous étudions la forme de l’ordre normal en connectant deux opérateurs non-commutatifs D et U, et des polynômes orthogonaux spéciaux, et établissons des bijonctions entre les coefficients de (D+U)n et le nombre de placements de tours sur un diagramme de Ferrers. Nous donnons également des preuves combinatoires à des conjectures quantiques posées par des physiciens. Dans la seconde partie, nous définissons des statistiques, comme emboîtements et k-emboîtements, sur l’ensemble des permutations du groupe de Coxeter de type B. Nous donnons également des extensions au type B des résultats sur les croisements et les emboîtements, respectivement k-croisements et k-emboîtements dans les permutations de type A, en termes de distributions symétriques. De plus, nous étudions le lien entre les opérateurs non-commutatifs et ces statistiques. D’autres extensions de la distribution de ces statistiques sur les ensembles de partitions colorées et de permutations colorées de types A et B sont ainsi établies / This thesis is divided into two parts, the first deals with the combinatorics associated to the normal ordering form of noncommutative operators and the second addresses the symmetric distributions of the crossing numbers and nesting numbers, respectively k-crossings and k-nestings, in combinatorial structures (partitions, permutations, colored permutations, …). The first part studies the normal order of operators in terms of rook placements. We study the normal ordering form connecting two noncommutative operators D and U, and some special orthogonal polynomials, and establish bijonctions between coefficients of (D+U)n and rook placements in Ferrers diagrams. We also give combinatorial proofs and alternatives to some quantum conjectures posed by physicists. In the second part, we define the notions of statistics, nestings and k-nestings, on the sets of permutations of the Coxeter group of type B. We also give extensions to type B of the results of the crossings and nestings, respectivelu k-crossings and K-nestings in the set of permutations of type A, in terms of symmetric distributions. Likewise, we study the link between non-commutative operators and these statistics. Other extensions of the distribution of these statistics on the sets of colored partitions and colored permutations of type A and B are established
|
16 |
Études combinatoires sur les permutations et partitions d'ensembleKasraoui, Anisse 12 March 2009 (has links) (PDF)
Cette thèse regroupe plusieurs travaux de combinatoire énumérative sur les permutations et permutations d'ensemble. Elle comporte 4 parties.Dans la première partie, nous répondons aux conjectures de Steingrimsson sur les partitions ordonnées d'ensemble. Plus précisément, nous montrons que les statistiques de Steingrimsson sur les partitions ordonnées d'ensemble ont la distribution euler-mahonienne. Dans la deuxième partie, nous introduisons et étudions une nouvelle classe de statistiques sur les mots : les statistiques "maj-inv". Ces dernières sont des interpolations graphiques des célèbres statistiques "indice majeur" et "nombre d'inversions". Dans la troisième partie, nous montrons que la distribution conjointe des statistiques"nombre de croisements" et "nombre d'imbrications" sur les partitions d'ensemble est symétrique. Nous étendrons aussi ce dernier résultat dans le cadre beaucoup plus large des 01-remplissages de "polyominoes lunaires".La quatrième et dernière partie est consacrée à l'étude combinatoire des q-polynômes de Laguerre d'Al-Salam-Chihara. Nous donnerons une interprétation combinatoire de la suite de moments et des coefficients de linéarisations de ces polynômes.
|
17 |
Modèles de volterra à complexité réduite : estimation paramétrique et application à l'égalisation des canaux de communicationKibangou, Alain Y. 28 January 2005 (has links) (PDF)
Une large classe de systèmes physiques peut être représentée à l'aide du modèle de Volterra. Il a notamment été montré que tout système non-linéaire, invariant dans le temps et à mémoire évanouissante peut être représenté par un modèle de Volterra de mémoire et d¤ordre finis. Ce modèle est donc particulièrement attrayant pour les besoins de modélisation et d'identification de systèmes non-linéaires. Un des atouts majeurs du modèle de Volterra est la linéarité par rapport à ses paramètres, c¤est à dire les coefficients de ses noyaux. Cette caractéristique permet d'étendre à ce modèle certains résultats établis pour l'identification des modèles linéaires. Il est à noter que le modèle de Volterra peut, par ailleurs, être vu comme une extension naturelle de la notion de réponse impulsionnelle des systèmes linéaires aux systèmes non-linéaires. Toutefois, certaines limitations sont à circonvenir: un nombre de paramètres qui peut être très élevé et un mauvais conditionnement de la matrice des moments de l'entrée intervenant dans l¤estimation du modèle au sens de l¤erreur quadratique moyenne minimale (EQMM). Il est à noter que ce mauvais conditionnement est aussi à l¤origine de la lenteur de convergence des algorithmes adaptatifs de type LMS (Least Mean Squares). Cette thèse traite principalement de ces deux questions. Les solutions apportées sont essentiellement basées sur la notion d'orthogonalité. D'une part, l'orthogonalité est envisagée vis à vis de la structure du modèle en développant les noyaux de Volterra sur une base orthogonale de fonctions rationnelles. Ce développement est d'autant plus parcimonieux que la base est bien choisie. Pour ce faire, nous avons développé de nouveaux outils d'optimisation des bases de Laguerre et BFOR (Base de Fonctions Orthonormales Rationnelles) pour la représentation des noyaux de Volterra. D'autre part, l'orthogonalité est envisagée en rapport avec les signaux d'entrée. En exploitant les propriétés statistiques de l¤entrée, des bases de polynômes orthogonaux multivariables ont été construites. Les paramètres du modèle de Volterra développé sur de telles bases sont alors estimés sans aucune inversion matricielle, ce qui simplifie significativement l¤estimation paramétrique au sens EQMM. L¤orthogonalisation des signaux d¤entrée a aussi été envisagée via une procédure de Gram-Schmidt. Dans un contexte adaptatif, il en résulte une accélération de la convergence des algorithmes de type LMS sans un surcoût de calcul excessif. Certains systèmes physiques peuvent être représentés à l¤aide d¤un modèle de Volterra simplifié, à faible complexité paramétrique, tel que le modèle de Hammerstein et celui de Wiener. C¤est le cas d¤un canal de communication représentant l'accès à un réseau sans fil via une fibre optique. Nous montrons notamment que les liaisons montante et descendante de ce canal peuvent respectivement être représentées par un modèle de Wiener et par un modèle de Hammerstein. Dans le cas mono-capteur, en utilisant un précodage de la séquence d'entrée, nous développons une solution permettant de réaliser l'estimation conjointe du canal de transmission et des symboles transmis de manière semiaveugle. Il est à noter que, dans le cas de la liaison montante, une configuration multi-capteurs peut aussi être envisagée. Pour une telle configuration, grâce à un précodage spécifique de la séquence d¤entrée, nous exploitons la diversité spatiale introduite par les capteurs et la diversité temporelle de sorte à obtenir une représentation tensorielle du signal reçu. En appliquant la technique de décomposition tensorielle dite PARAFAC, nous réalisons l'estimation conjointe du canal et des symboles émis de manière aveugle. Mots clés: Modélisation, Identification, Bases orthogonales, Base de Laguerre, Base de fonctions orthonormales rationnelles, Polynômes orthogonaux, Optimisation de pôles, Réduction de complexité, Egalisation, Modèle de Volterra, Modèle de Wiener, Modèle de Hammerstein, Décomposition PARAFAC.
|
18 |
Polynômes orthogonaux : processus limites et modèles exactement résolublesLemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles
exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre
nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles
appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de
Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes
appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente
quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les
propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de
chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux
modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions
sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang
deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito
multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la
superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de
Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction
génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection
to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal
polynomials are caracterized through limit processes applied to families belonging to the Askey
and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are
considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also
introduced. The second part presents four exactly solvable models connected to the theory of
orthogonal polynomials. The perfect transfer of quantum information and entanglement generation
properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are
examined. Two superintegrable models containing reflexion operators are proposed. Their solutions
are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank
Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials
as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution
identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations
in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.
|
19 |
−1 polynômes orthogonauxPelletier, Jonathan 09 1900 (has links)
Ce mémoire est composé de deux articles qui ont pour but commun de lever le voile et de
compléter le schéma d’Askey des q–polynômes orthogonaux dans la limite q = −1. L’objectif
est donc de trouver toutes les familles de polynômes orthogonaux dans la limite −1, de
caractériser ces familles et de les connecter aux autres familles de polynômes orthogonaux
−1 déjà introduites. Dans le premier article, une méthode basée sur la prise de limites dans
les relations de récurrence est présentée. En utilisant cette méthode, plusieurs nouvelles
familles de polynômes orthogonaux sur des intervals continus sont introduites et un schéma
est construit reliant toutes ces familles de polynômes −1. Dans le second article, un ensemble
de polynômes, orthogonaux sur l’agencement de quatre grilles linéaires, nommé les polynômes
de para-Bannai-Ito est introduit. Cette famille de polynômes complète ainsi la liste des parapolynômes. / This master thesis contains two articles with the common goal of unveiling and completing
the Askey scheme of q–orthogonal polynomials in the q = −1 limit. The main objective
is to find and characterize new families of -1 orthogonal polynomials and connect them
to other already known families. In the first article, a method based on applying limits
in recurrence relations is presented. This method is used to find many new families of
polynomials orthogonal with respect to continuous measure. A −1 scheme containing them
is constructed and a compendium containing the properties of all such families is included.
In the second article, a new set of polynomials named the para–Bannai–Ito polynomials is
introduced. This new set, orthogonal on a linear quadri–lattice, completes the list of parapolynomials, but it is also a step toward the finalization of the -1 scheme of polynomials
orthogonal on finite grids.
|
20 |
Études combinatoires sur les permutations et partitions d'ensemble / Combinatorial studies on set partitions and permutationsKasraoui, Anisse 12 March 2009 (has links)
Cette thèse regroupe plusieurs travaux de combinatoire énumérative sur les permutations et permutations d'ensemble. Elle comporte 4 parties.Dans la première partie, nous répondons aux conjectures de Steingrimsson sur les partitions ordonnées d'ensemble. Plus précisément, nous montrons que les statistiques de Steingrimsson sur les partitions ordonnées d'ensemble ont la distribution euler-mahonienne. Dans la deuxième partie, nous introduisons et étudions une nouvelle classe de statistiques sur les mots : les statistiques "maj-inv". Ces dernières sont des interpolations graphiques des célèbres statistiques "indice majeur" et "nombre d'inversions". Dans la troisième partie, nous montrons que la distribution conjointe des statistiques"nombre de croisements" et "nombre d'imbrications" sur les partitions d'ensemble est symétrique. Nous étendrons aussi ce dernier résultat dans le cadre beaucoup plus large des 01-remplissages de "polyominoes lunaires".La quatrième et dernière partie est consacrée à l'étude combinatoire des q-polynômes de Laguerre d'Al-Salam-Chihara. Nous donnerons une interprétation combinatoire de la suite de moments et des coefficients de linéarisations de ces polynômes. / This thesis consists of four chapters, each on a different topic in enumerative combinatorics, all related in some way to the enumeration of permutations or set partitions. In the first chapter, we prove and generalize Steingrimsson's conjectures on Euler-Mahonian statistics on ordered set partitions. In the second chapter, we introduce and study a new class of statistics on words: the "maj-inv" statistics. These are graphical interpolation of the well-known "major index" and "inversion number".In the third chapter, we show that the joint distribution of the numbers of crossings and nestings on set partitions is symmetric. We also put this result in the larger context of enumeration of increasing and decreasing chains in 01-fillings of moon polyominoes.In the last chapter, we decribe various aspects of the Al-Salam-Chihara q-Laguerre polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial interpretation of the linearization coefficients.
|
Page generated in 0.0741 seconds