• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 28
  • 3
  • 2
  • Tagged with
  • 88
  • 26
  • 15
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Survivable Network Design Problems with High Node-Connectivity Constraints : Polyhedra and Algorithms / Conception de réseaux fiables avec fortes contraintes de sommet-connexité : Étude polyédrale et Algorithmes

Mahjoub, Meriem 13 December 2017 (has links)
Dans un graphe non orienté, le problème du sous-graphe k-sommet connexe consiste à déterminer un sous-graphe de poids minimum tel que entre chaque paires de sommets, il existe k chemins sommet-disjoints. Ce modèle a été étudié dans la littérature en termes d'arête connexité. Cependant, le cas de la sommet connexité n'a pas été traité jusqu'à présent. Nous décrivons de nouvelles inégalités valides et nous présentons un algorithme de Coupes et Branchements ainsi qu'une large étude expérimentale qui montrent l'efficacité des contraintes utilisées. Nous proposons ensuite une formulation étendue pour le même problème pour une connexité k=2, suivi d'un algorithme de Génération de Colonnes et Branchements pour résoudre cette formulation.Nous étudions ensuite la version avec chemins bornés du problème. Le problème consiste à trouver un sous-graphe de poids minimum, tel que entre chaque paire d'origine-destination, il existe k chemins sommet-disjoints de longueur au plus L. Nous proposons une formulation linéaire en nombres entiers pour L=2,3. Nous présentons de nouvelles inégalités valides et nous proposons des algorithmes de séparation pour ces contraintes. Nous présentons ensuite un algorithme de Coupes et Branchements qu'on a testé sur des instances de la TSPLIB. / Given a weighted undirected graph and an integer k, the k-node-connected subgraph problem is to find a minimum weight subgraph which contains k-node-disjoint paths between every pair of nodes. We introduce new classes of valid inequalities and discuss their facial aspect. We also devise separation routines, investigate the structural properties of the linear relaxation and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we devise a Branch-and-Cut algorithm and present some computational results. Then we present a new extended formulation for the the k-node-connected subgraph problem, along with a Branch-and-Cut-and-Price algorithm for solving the problem.Next, we investigate the hop-constrained version of the problem. The k node-disjoint hop-constrained network design problem is to find a minimum weight subgraph such that between every origin and destination there exist at least k node-disjoint paths of length at most L. We propose an integer linear programming formulation for L=2,3 and investigate the associated polytope. We introduce valid inequalities and devise separation algorithms. Then, we propose a B\&C algorithm for solving the problem along with some computational results.
52

Fuzzy Bilevel Optimization

Ruziyeva, Alina 13 February 2013 (has links)
In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 97
53

Okounkov Bodies of Borel Orbit Closures in Wonderful Group Compactifications

Miller, Jason A. 09 July 2014 (has links)
No description available.
54

A Polyhedral Approach for the Double TSP with Multiple Stacks and Lexicographical Orders / Une approche polyédrale pour le problème du double voyageur de commerce sous contraintes de piles et pour les ordres lexicographiques

Barbato, Michele 05 October 2016 (has links)
Dans cette thèse nous considérons deux problèmes d'optimisation combinatoire.Le premier s'appelle problème du double voyageur de commerce avec contraintes de piles. Dans ce problème, un véhicule doit ramasser un certain nombre d'objets dans une région pour les livrer à des clients situés dans une autre région. Lors du ramassage, les objets sont stockés dans les différentes piles du véhicule et la livraison des objets se fait selon une politique de type last-in-first-out. Le ramassage et la livraison consistent chacune en une tournée Hamiltonienne effectuée par le véhicule dans la région correspondante.Nous donnons une formulation linéaire en nombres entiers pour ce problème. Elle est basée sur des variables de précédence et sur des contraintes de chemins infaisables. Nous donnons par la suite des résultats polyédraux sur l'enveloppe convexe des solutions de notre formulation. En particulier, nous montrons des liens forts avec un polytope associé au problème du voyageur de commerce et des liens avec un polytope de type set covering. Cette étude polyédrale nous permet de renforcer la formulation initiale et de développer un algorithme de coupes et branchements efficace. Le deuxième problème que nous considérons consiste à trouver la description des polytopes lexicographiques. Ces derniers sont les enveloppes convexes des points entiers lexicographiquement compris entre deux points entiers fixés. Nous donnons une description complète de ces polytopes en termes d'inégalités linéaires. Nous démontrons que la famille des polytopes lexicographiques est fermée par intersection. / In this thesis we consider two problems arising in combinatorial optimization.The first one is the double traveling salesman problem with multiple stacks. In this problem a vehicle picks up a given set of items in a region and subsequently delivers them to demanding customers in another region. When an item is picked up, it is put in a stack of the vehicle. The items are delivered observing a last-in-first-out policy. The pickup phase and the delivery phase consist in two Hamiltonian circuits, each performed by the vehicle in the corresponding region. We give a new integer linear programming formulation for this problem. Its main features are the presence of precedence variables and new infeasible path constraints. We provide polyhedral results on the convex hull of the solutions to our formulation. In particular, we show strong links with a specific TSPpolytope and a specific set covering polytope. We deduce strengthening inequalities for the initial formulation, subsequently embedded in an efficient branch-and-cut algorithm. The second problem we consider consists in finding the description of the lexicographical polytopes. These are convex hulls of the integer points lexicographically between two given integer points. We give a complete description of these polytopes by means of linear inequalities. We show that the lexicographical polytope family is closed under intersection.
55

Matrices aléatoires, processus entrelacés, et représentations de groupes

Defosseux, Manon 09 December 2008 (has links) (PDF)
Nous démontrons une version d'un théorème d'Heckman permettant de préciser le lien qui unit la théorie des représentations des groupes compacts à celle des matrices aléatoires à valeurs dans l'algèbre de Lie du groupe compact connexe K et dont la loi est K-invariante.<br />Les groupes de Lie classiques, qu'on note K(n), sont les ensembles de matrices unitaires de taille n*n à entrées dans le corps des réels, des complexes ou des quaternions. Pour chacun d'eux, nous étudions plus précisément deux types d'ensembles invariants. Le premier est l'ensemble k(n) - algèbre de Lie de K(n) - muni de la mesure gaussienne. Les règles de branchement classiques nous permettent de calculer la loi des mineurs principaux des matrices de ces ensembles. Le deuxième est une généralisation de l'ensemble unitaire de Laguerre (LUE). Au sein de la théorie des représentations, celle des cristaux de Kashiwara nous permet d'étudier cet ensemble. <br />Pickrell a montré que dans le cas complexe la limite d'une famille consistante de mesures K(n)-invariantes sur k(n) est ergodique si et seulement si elle est la loi d'une combinaison linéaire de matrices indépendantes de type Gaussien ou Laguerre. Nous montrons que son résultat reste vrai pour les autres groupes de Lie classiques.<br />La généralisation du LUE que nous proposons est obtenue en considérant des sommes de matrices aléatoires de rang un. L'étude de ces perturbations et des mineurs principaux fait apparaître des processus entrelacés. Nous montrons qu'une large classe d'entre eux sont déterminantaux et donnons leur noyau de corrélation.
56

Inégalités isopérimétriques sur les graphes et applications en géométrie différentielle

Balacheff, florent 11 July 2005 (has links) (PDF)
Cette thèse étudie certaines inégalités isopérimétriques globales sur les graphes métriques et les variétés riemanniennes. Tout d'abord, nous établissons pour un graphe métrique une inégalité isopérimétrique entre l'entropie volumique et la systole, puis étudions la géométrie de la boule unité de la norme stable en fonction de la combinatoire du graphe. Nous poursuivons en montrant que, pour une variété riemannienne fermée (M,g) de dimension au moins trois et de premier nombre de Betti non nul, une large classe de polytopes apparaît comme boule unité de la norme stable d'une métrique dans la classe conforme de g. Nous exhibons ensuite une borne supérieure de la constante systolique de la somme connexe de n exemplaires d'une variété M, montrant ainsi que la croissance de la constante systolique en fonction de n est toujours plus lente que la croissance linéaire. Enfin, nous démontrons une inégalité entre la systole, la longueur du lacet systolique et le diamètre d'une variété riemannienne simplement connexe dont le second groupe homotopique est non trivial.
57

Réduction des graphes de Goresky-Kottwitz-MacPherson ; nombres de Kostka et coefficients de Littlewood-Richardson

Cochet, Charles 19 December 2003 (has links) (PDF)
Ce travail concerne la réalisation concrète en calcul formel d'algorithmes abstraits issus de publications récentes. Il comporte deux parties distinctes mais cependant issues du m(ê)me monde : l'action d'un groupe de Lie, sur une variété ou un espace vectoriel. La première partie traite de l'implémentation de la réduction d'un graphe de Goresky-Kottwitz-MacPherson. Ce graphe est l'analogue combinatoire d'une variété symplectique compacte connexe soumise à une action hamiltonienne d'un tore compact. La seconde partie est consacrée à l'implémentation du calcul de deux coefficients intervenant lors de l'action d'un groupe de Lie semi-simple complexe sur un espace vectoriel de dimension finie : la multiplicité d'un poids dans une représentation irréductible de dimension finie (nombre de Kostka) et les coefficients de décomposition du produit tensoriel de deux représentations irréductibles de dimension finie (coefficients de Littlewood-Richardson).
58

Sommes de Minkowski de triangles

Rousset, Mireille 22 October 1996 (has links) (PDF)
La modélisation géométrique d'un problème de gestion de la fabrication des mélanges (faisabilité simultanée de deux mélanges) fait apparaître des polytopes nouveaux résultant de la somme de triangles particuliers qui dans ce contexte sont appelés convexes de 2-mélanges. De façon plus générale, la somme de triangles peut être considérée comme la généralisation des zonotopes (somme de segments). De ce point de vue, l'étude menée ici fait apparaître que la propriété de zone associée à un segment du zonotope se généralise à trois demi-zones associées à chaque triangle; et que la complexité combinatoire (nombre de faces du polytope), par rapport au nombre de sommandes, est du même ordre de grandeur que celle des zonotopes. On traite également le problème de la construction de tels polytopes, des algorithmes optimaux en temps sont proposés. Concernant le problème particulier des mélanges, le premier cas non trivial est celui de mélanges à trois composantes qui nous place en dimension 6. L'appartenance d'un point au convexe de 2-mélanges détermine la faisabilité simultanée des mélanges. Les facettes de ce polytope sont décrites, en détail, dans le cas de la dimension 6, dans le but d'obtenir des conditions de faisabilité des deux mélanges. Le problème de la décomposition de polytopes en somme de Minkowski de polytopes plus simples est exposé, ainsi que les principaux résultats existant.
59

SYMPAD - A Class Library for Processing Parallel Algorithm Specifications

Rullmann, Markus, Schaffer, Rainer, Siegel, Sebastian, Merker, Renate 08 June 2007 (has links) (PDF)
In this paper we introduce a new class library to model transformations of parallel algorithms. SYMPAD serves as a basis to develop automated tools and methods to generate efficient implementations of such algorithms. The paper gives an overview over the general structure, as well as features of the library. We further describe the fundamental design process that is controlled by our developed methods.
60

Two level polytopes :geometry and optimization

Macchia, Marco 07 September 2018 (has links)
A (convex) polytope P is said to be 2-level if every hyperplane H that is facet-defining for P has a parallel hyperplane H' that contains all the vertices of P which are not contained in H.Two level polytopes appear in different areas of mathematics, in particular in contexts related to discrete geometry and optimization. We study the problem of enumerating all combinatorial types of 2-level polytopes of a fixed dimension d. We describe the first algorithm to achieve this. We ran it to produce the complete database for d <= 8. Our results show that the number of combinatorial types of 2-level d-polytopes is surprisingly small for low dimensions d.We provide an upper bound for the number of combinatorially inequivalent 2-level d-polytopes. We phrase this counting problem in terms of counting some objects called 2-level configurations, that capture the class of "maximal" rank d 0/1-matrices, including (maximal) slack matrices of 2-level cones and 2-level polytopes. We provide a proof that the number of d-dimensional 2-level configurations coming from cones and polytopes, up to linear equivalence, is at most 2^{O(d^2 log d)}.Finally, we prove that the extension complexity of every stable set polytope of a bipartite graph with n nodes is O(n^2 log n) and that there exists an infinite class of bipartite graphs such that, for every n-node graph in this class, its stable set polytope has extension complexity equal to Omega(n log n). / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0267 seconds