• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pontos parcialmente umbílicos em famílias a um parâmetro de hipersuperfícies imersas em R4 / Partially Umbilic Points in One-parameter Families of Hypersurfaces Immersed in R^4.

Silva, Débora Lopes da 09 November 2012 (has links)
Neste trabalho, estudamos as Singularidades das folheações mutuamente ortogonais, numa variedade orientada M^3 de dimensão 3, cujas folhas são as curvas integrais dos campos de direções de curvatura principal associadas a uma imersão : M^3 R^4. Damos aqui continuidade às contribuições de R. Garcia referente ao estudo das singularidades genéricas das folheações principais. Apresentamos as configurações principais numa vizinhança dos pontos parcialmente umbílicos de codimensão 1, ou seja, as singularidades das folheações principais que aparecem genericamente em famílias a 1 parâmetro de hipersuperfícies imersas em R^4, e os diagramas de bifurcação pertinentes. Enfraquecendo a condição de genericidade, da maneira mais simples possível, encontramos oito tipos genéricos: D_1^ 1, D^1_ 2, D^1_ 3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_p e D^1_c , definidos ao longo do trabalho. Nesta tese consubstanciamos matematicamente a seguinte conclusão: As singularidades das folheações principais, que aparecem genericamente em famílias a 1 parâmetro de hipersuperfícies imersas em R^4, são os pontos parcialmente umbílicos D_1^ 1, D^1_ 2, D^1_ 3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_ e D^1_ , cujas definições e propriedades serão apresentados aqui. A parte central desta tese é estabelecer, analítica e geometricamente, a configuração principal destes pontos incluindo seus diagramas de bifurcação. / In this work we study the mutually ortogonal foliations, in oriented three dimensional manifolds M^3, whose leaves are the integral curves of the principal curvature direction fields associated to immersions : M^3 R^4. We focus on behavior of these foliation around singularities. Here we extend the contributions of R. Garcia concerning the study of generic singularities. To this end we establish the principal configurations in a neighborhood of partially umbilic points of codimension one. These are the singularities which appear generically in one parameter families of hypersurfaces and give their bifurcation diagrams. We express the condition of genericity by minimally weakening those given by R. Garcia and by adding instead new higher order ones. This procedure leads to the novel generic types: D^1_1, D^1_2, D^1_3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_p and D^1_c , studied in this work. The central part of this thesis is to establish, analitically and geometrically, the local principal configurations at these points, including their bifurcations diagrams.
2

Pontos parcialmente umbílicos em famílias a um parâmetro de hipersuperfícies imersas em R4 / Partially Umbilic Points in One-parameter Families of Hypersurfaces Immersed in R^4.

Débora Lopes da Silva 09 November 2012 (has links)
Neste trabalho, estudamos as Singularidades das folheações mutuamente ortogonais, numa variedade orientada M^3 de dimensão 3, cujas folhas são as curvas integrais dos campos de direções de curvatura principal associadas a uma imersão : M^3 R^4. Damos aqui continuidade às contribuições de R. Garcia referente ao estudo das singularidades genéricas das folheações principais. Apresentamos as configurações principais numa vizinhança dos pontos parcialmente umbílicos de codimensão 1, ou seja, as singularidades das folheações principais que aparecem genericamente em famílias a 1 parâmetro de hipersuperfícies imersas em R^4, e os diagramas de bifurcação pertinentes. Enfraquecendo a condição de genericidade, da maneira mais simples possível, encontramos oito tipos genéricos: D_1^ 1, D^1_ 2, D^1_ 3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_p e D^1_c , definidos ao longo do trabalho. Nesta tese consubstanciamos matematicamente a seguinte conclusão: As singularidades das folheações principais, que aparecem genericamente em famílias a 1 parâmetro de hipersuperfícies imersas em R^4, são os pontos parcialmente umbílicos D_1^ 1, D^1_ 2, D^1_ 3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_ e D^1_ , cujas definições e propriedades serão apresentados aqui. A parte central desta tese é estabelecer, analítica e geometricamente, a configuração principal destes pontos incluindo seus diagramas de bifurcação. / In this work we study the mutually ortogonal foliations, in oriented three dimensional manifolds M^3, whose leaves are the integral curves of the principal curvature direction fields associated to immersions : M^3 R^4. We focus on behavior of these foliation around singularities. Here we extend the contributions of R. Garcia concerning the study of generic singularities. To this end we establish the principal configurations in a neighborhood of partially umbilic points of codimension one. These are the singularities which appear generically in one parameter families of hypersurfaces and give their bifurcation diagrams. We express the condition of genericity by minimally weakening those given by R. Garcia and by adding instead new higher order ones. This procedure leads to the novel generic types: D^1_1, D^1_2, D^1_3, D^1_, D^1_{1h,p}, D^1_{1h,n}, D^1_p and D^1_c , studied in this work. The central part of this thesis is to establish, analitically and geometrically, the local principal configurations at these points, including their bifurcations diagrams.
3

Geometria extrínseca de campos de vetores em R3 / Extrinsic geometry of vector fields in R3

Gomes, Alacy José 13 May 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / In this work we first consider regular vector fields : R3 􀀀! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field . / Neste trabalho consideramos inicialmente campos de vetores regulares : R3 􀀀! R3 e sua distribuições ortogonais de planos . Apresentamos uma caracterização da curvatura normal associada a e do sistema de equações diferenciais implícitas, 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; que definem duas folheações unidimensionais singulares e ortogonais, denominadas de folheações principais e cujas folhas são as linhas principais da distribuição . A seguir descrevemos as configurações das folheações principais, numa vizinhança dos pontos singulares genéricos que constituem uma curva regular em R3, denominados de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois estudamos a estabilidade das linhas principais fechadas e apresentamos também um resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura dos pontos singulares das folheações principais na vizinhança de um ponto singular hiperbólico do campo de vetores .

Page generated in 0.1132 seconds