Spelling suggestions: "subject:"popper"" "subject:"popped""
1 |
Computational Study of Poppet Valves on Flow FieldsMane, Prashant V. January 2013 (has links)
No description available.
|
2 |
Control Strategy for Energy Efficient Fluid Power Actuators : Utilizing Individual MeteringEriksson, Björn January 2007 (has links)
This thesis presents a solution enabling lower losses in hydraulic actuator systems. A mobile fluid power system often contains several different actuators supplied with a single load sensing pump. One of the main advantages is the need of only one system pump. This makes the fluid power system compact and cost-effective. A hydraulic load often consists of two ports, e.g. motors and cylinders. Such loads have traditionally been controlled by a valve that controls these ports by one single control signal, namely the position of the spool in a control valve. In this kind of valve, the inlet (meter-in) and outlet (meter-out) orifices are mechanically connected. The mechanical connection makes the system robust and easy to control, at the same time as the system lacks flexibility. Some of the main drawbacks are The fixed relation between the inlet and outlet orifices in most applications produce too much throttling at the outlet orifice under most operating conditions. This makes the system inefficient. The flow directions are fixed for a given spool position; therefore, no energy recuperation and/or regeneration ability is available. In this thesis a novel system idea enabling, for example, recuperation and regeneration is presented. Recuperation is when flow is taken from a tank, pressurized by external loads, and then fed back into the pump line. Regeneration is when either cylinder chambers (or motor ports) are connected to the pump line. Only one system pump is needed. Pressure compensated (load independent), bidirectional, poppet valves are proposed and utilized. The novel system presented in this thesis needs only a position sensor on each compensator spool. This simple sensor is also suitable for identification of mode switches, e.g. between normal, differential and regenerative modes. Patent pending. The balance of where to put the functionality (hardware and/or software) makes it possible to manoeuvre the system with maintained speed control in the case of sensor failure. The main reason is that the novel system does not need pressure transducers for flow determination. Some features of the novel system: Mode switches The mode switches are accomplished without knowledge about the pressures in the system Throttle losses With the new system approach, choice of control and measure signals, the throttle losses at the control valves are reduced Smooth mode switches The system will switch to regenerative mode automatically in a smooth manner when possible Use energy stored in the loads The load, e.g. a cylinder, is able to be used as a motor when possible, enabling the system to recuperate overrun loads The system and its components are described together with the control algorithms that enable energy efficient operation. Measurements from a real application are also presented in the thesis.
|
3 |
Improvement of the Vibration Prediction of a Poppet Valve in a Cavitation StateKumagai, Kento, Ryu, Shohei, Ota, Masanori, Maeno, Kazuo 27 April 2016 (has links) (PDF)
Poppet valves are popular components of hydraulic systems, but they sometimes induce vibration in these systems. In particular, the vibration phenomenon of a poppet valve in a cavitation state is a troublesome problem in hydraulic systems, because the dynamic effects of cavitation on the poppet valve are difficult to predict. In this research, we investigated the vibration phenomenon of the poppet valve in the cavitation state in a visualization experiment and numerical simulation. We found in numerical simulation that it is possible to predict the tendency of the vibration by assuming that the bulk modulus of hydraulic oil is affected by the ratio of cavitation bubbles mixed in the oil. Additionally, we proposed a simple method of estimating the quantity of cavitation bubbles through visualization experiments and image processing. We then improved the prediction accuracy of the poppet valve behavior by applying the bubble mixing ratio obtained using the method in the numerical simulation model. The described methods not only avoid the sensor effect on the flow field but also save the additional measurement cost, and they are easy to apply to hydraulics systems.
|
4 |
Characteristics of Proportional Flow Control Poppet Valve with Pilot Pressure CompensationHuang, Jiahai, Quan, Long, Gao, Youshan 28 April 2016 (has links) (PDF)
Electro-hydraulic proportional flow valves are widely used in hydraulic industry. There are several different structures and working principles. However, flow valves based on the existing principles usually have some shortcomings such as the complexity of the system and additional energy losses. A concept for a two-stage poppet flow valve with pilot pressure drop – pilot spool opening compensation is presented, and the linear relationship between the pilot stage and main stage, the semi-empirical flow equation are used in the electronic flow controller. To achieve the accurate control of the outlet flow, the actual input voltage of the pilot spool valve is regulated according to the actual pilot pressure drop, the desired flow rate and the given input voltage. The results show that the pilot pressure drop – pilot spool opening compensation method is feasible, and the proposed proportional flow control valve with this compensation method has a good static and dynamic performance.
|
5 |
Visualization of cavitation and investigation of cavitation erosion in a valveKrahl, Dominik, Weber, Jürgen, Fuchs, Maik 27 April 2016 (has links) (PDF)
Avoiding cavitation and especially cavitation erosion are tasks, which have to be considered when working with hydraulics. State of the art is the assessment of the risk of erosion by component testing or to completely avoid cavitation by means of CFD. Another reliable method to assess the risk of cavitation erosion is until now not available. This paper deals with this problem and delivers comparative values for a later method development. In a first step the cavitation of a poppet valve, which controls a methanol flow, is visualized. The resulting three cavitation appearances are deeply examined. After that the results of long-term tests at different operation conditions are presented. A poppet surface analysis following each experiment has shown different types of surface attacks. As a result of this work it is shown that both cavitation appearance and surface attack are strongly influenced by the temperature dependent air solubility of the liquid.
|
6 |
Mean value modelling of a poppet valve EGR-system / Modellering avEGR-system med tallriksventilEricson, Claes January 2004 (has links)
<p>Because of new emission and on board diagnostics legislations, heavy truck manufacturers are facing new challenges when it comes to improving the engines and the control software. Accurate and real time executable engine models are essential in this work. One successful way of lowering the NOx emissions is to use Exhaust Gas Recirculation (EGR). The objective of this thesis is to create a mean value model for Scania's next generation EGR system consisting of a poppet valve and a two stage cooler. The model will be used to extend an existing mean value engine model. Two models of different complexity for the EGR system have been validated with sufficient accuracy. Validation was performed during static test bed conditions. The resulting flow models have mean relative errors of 5.0% and 9.1% respectively. The temperature model suggested has a mean relative error of 0.77%.</p>
|
7 |
Mean value modelling of a poppet valve EGR-system / Modellering avEGR-system med tallriksventilEricson, Claes January 2004 (has links)
Because of new emission and on board diagnostics legislations, heavy truck manufacturers are facing new challenges when it comes to improving the engines and the control software. Accurate and real time executable engine models are essential in this work. One successful way of lowering the NOx emissions is to use Exhaust Gas Recirculation (EGR). The objective of this thesis is to create a mean value model for Scania's next generation EGR system consisting of a poppet valve and a two stage cooler. The model will be used to extend an existing mean value engine model. Two models of different complexity for the EGR system have been validated with sufficient accuracy. Validation was performed during static test bed conditions. The resulting flow models have mean relative errors of 5.0% and 9.1% respectively. The temperature model suggested has a mean relative error of 0.77%.
|
8 |
Control Strategy for Energy Efficient Fluid Power Actuators : Utilizing Individual MeteringEriksson, Björn January 2007 (has links)
<p>This thesis presents a solution enabling lower losses in hydraulic actuator systems. A mobile fluid power system often contains several different actuators supplied with a single load sensing pump. One of the main advantages is the need of only one system pump. This makes the fluid power system compact and cost-effective.</p><p>A hydraulic load often consists of two ports, e.g. motors and cylinders. Such loads have traditionally been controlled by a valve that controls these ports by one single control signal, namely the position of the spool in a control valve. In this kind of valve, the inlet (meter-in) and outlet (meter-out) orifices are mechanically connected. The mechanical connection makes the system robust and easy to control, at the same time as the system lacks flexibility. Some of the main drawbacks are</p><p><strong> </strong></p><p><strong>The fixed relation </strong>between the inlet and outlet orifices in most applications produce too much throttling at the outlet orifice under most operating conditions. This makes the system inefficient.</p><p><strong> </strong></p><p><strong>The flow directions </strong>are fixed for a given spool position; therefore, no energy recuperation and/or regeneration ability is available.</p><p>In this thesis a novel system idea enabling, for example, recuperation and regeneration is presented. Recuperation is when flow is taken from a tank, pressurized by external loads, and then fed back into the pump line. Regeneration is when either cylinder chambers (or motor ports) are connected to the pump line. Only one system pump is needed. Pressure compensated (load independent), bidirectional, poppet valves are proposed and utilized.</p><p>The novel system presented in this thesis needs only a position sensor on each compensator spool. This simple sensor is also suitable for identification of mode switches, e.g. between normal, differential and regenerative modes. Patent pending.</p><p>The balance of where to put the functionality (hardware and/or software) makes it possible to manoeuvre the system with maintained speed control in the case of sensor failure. The main reason is that the novel system does not need pressure transducers for flow determination. Some features of the novel system:</p><p><strong>Mode switches </strong>The mode switches are accomplished without knowledge about the pressures in the system</p><p><strong>Throttle losses </strong>With the new system approach, choice of control and measure signals, the throttle losses at the control valves are reduced</p><p><strong>Smooth mode switches </strong>The system will switch to regenerative mode automatically in a smooth manner when possible</p><p><strong>Use energy stored in the loads </strong>The load, e.g. a cylinder, is able to be used as a motor when possible, enabling the system to recuperate overrun loads</p><p>The system and its components are described together with the control algorithms that enable energy efficient operation. Measurements from a real application are also presented in the thesis.</p>
|
9 |
Improvement of the Vibration Prediction of a Poppet Valve in a Cavitation StateKumagai, Kento, Ryu, Shohei, Ota, Masanori, Maeno, Kazuo January 2016 (has links)
Poppet valves are popular components of hydraulic systems, but they sometimes induce vibration in these systems. In particular, the vibration phenomenon of a poppet valve in a cavitation state is a troublesome problem in hydraulic systems, because the dynamic effects of cavitation on the poppet valve are difficult to predict. In this research, we investigated the vibration phenomenon of the poppet valve in the cavitation state in a visualization experiment and numerical simulation. We found in numerical simulation that it is possible to predict the tendency of the vibration by assuming that the bulk modulus of hydraulic oil is affected by the ratio of cavitation bubbles mixed in the oil. Additionally, we proposed a simple method of estimating the quantity of cavitation bubbles through visualization experiments and image processing. We then improved the prediction accuracy of the poppet valve behavior by applying the bubble mixing ratio obtained using the method in the numerical simulation model. The described methods not only avoid the sensor effect on the flow field but also save the additional measurement cost, and they are easy to apply to hydraulics systems.
|
10 |
Characteristics of Proportional Flow Control Poppet Valve with Pilot Pressure CompensationHuang, Jiahai, Quan, Long, Gao, Youshan January 2016 (has links)
Electro-hydraulic proportional flow valves are widely used in hydraulic industry. There are several different structures and working principles. However, flow valves based on the existing principles usually have some shortcomings such as the complexity of the system and additional energy losses. A concept for a two-stage poppet flow valve with pilot pressure drop – pilot spool opening compensation is presented, and the linear relationship between the pilot stage and main stage, the semi-empirical flow equation are used in the electronic flow controller. To achieve the accurate control of the outlet flow, the actual input voltage of the pilot spool valve is regulated according to the actual pilot pressure drop, the desired flow rate and the given input voltage. The results show that the pilot pressure drop – pilot spool opening compensation method is feasible, and the proposed proportional flow control valve with this compensation method has a good static and dynamic performance.
|
Page generated in 0.0375 seconds