• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Beschreibung des kapillaren Flüssigkeitstransportes in Papier

Middendorf, Jörg 20 July 2000 (has links) (PDF)
In Offsetdruckanlagen wird neben der Druckfarbe eine im wesentlichen aus Wasser bestehende Flüssigkeit, sog. Feuchtmittel, auf das Papier übertragen. Diese Feuchtigkeit verbleibt nicht an der Oberfläche des Bedruckstoffes, sondern dringt unter der Wirkung von Kapillarkräften in den Kernbereich der porösen Struktur ein. Der zeitliche Verlauf dieses kapillaren Transportvorganges übt insofern einen entscheidenden Einfluß auf die Druckqualität aus, als eine schnelle Entfeuchtung der Oberflächenzone die Voraussetzung für eine vollständige Farbannahme beim sukzessiven mehrfarbigen Bedrucken darstellt. Darüber hinaus hängen feuchtigkeitsbedingte Änderungen des für die Gesamtstruktur maßgeblichen Deformationsverhaltens von der Geschwindigkeit ab, mit welcher sich die Flüssigkeit über den Querschnitt verteilt. In dieser Arbeit wird auf der Grundlage einer mischungstheoretischen Axiomatik ein Modell zur Beschreibung des kapillaren Flüssigkeitstransportes in Papier vorgeschlagen, dessen Homogenisierungsgrad einerseits den wesentlichen Einflüssen des Porenraumes auf das Transportverhalten Rechnung trägt, andererseits Einzelheiten nur soweit einbezieht, als sie sich einer Identifikation erschließen. Ein wesentliches Merkmal des strukturübergreifend formulierten Ansatzes besteht in der Einführung von Volumenanteilen für die Konstituierenden des als Mehrphasenkörper betrachteten teilgesättigten porösen Mediums. In Bezug auf die Formulierung eines makroskopischen Bewegungsgesetzes für den teilgesättigten Flüssigkeitstransport sowie hinsichtlich der Annahmen, welche die konstitutiven Beziehungen betreffen, wird auf den MUSKATschen Ansatz zurückgegriffen, wie er sich auf den Gebieten der Hydrologie bzw. der Bodenphysik bewährt hat. Mit der Vernachlässigbarkeit des Schwerkrafteinflusses sowie der Annahme einer kompressionsfreien Verdrängung der im Porenraum enthaltenen Luft ergeben sich gegenüber einem allgemeinen Zweiphasentransportproblem Vereinfachungen in der mathematischen Beschreibung: Die von der Luftströmung entkoppelte Betrachtung der Flüssigkeitsbewegung mündet in eine Transportgleichung vom Typ einer nichtlinearen Wärmeleitungsgleichung. Zur Lösung dieser parabolischen Differentialgleichung für das Anfangs-Randwert-Problem, wie es den obengenannten Ausbreitungsvorgang beschreibt, wurde das Heat-Transfer-Tool des kommerziellen Finite-Element-Programms MARC eingesetzt. Auf der Grundlage experimentell ermittelter Porengrößenverteilungsdichten gelang eine näherungsweise Bestimmung der Transportkoeffizienten sowie der konstitutiven Beziehungen.
2

Zur Beschreibung des kapillaren Flüssigkeitstransportes in Papier

Middendorf, Jörg 14 July 2000 (has links)
In Offsetdruckanlagen wird neben der Druckfarbe eine im wesentlichen aus Wasser bestehende Flüssigkeit, sog. Feuchtmittel, auf das Papier übertragen. Diese Feuchtigkeit verbleibt nicht an der Oberfläche des Bedruckstoffes, sondern dringt unter der Wirkung von Kapillarkräften in den Kernbereich der porösen Struktur ein. Der zeitliche Verlauf dieses kapillaren Transportvorganges übt insofern einen entscheidenden Einfluß auf die Druckqualität aus, als eine schnelle Entfeuchtung der Oberflächenzone die Voraussetzung für eine vollständige Farbannahme beim sukzessiven mehrfarbigen Bedrucken darstellt. Darüber hinaus hängen feuchtigkeitsbedingte Änderungen des für die Gesamtstruktur maßgeblichen Deformationsverhaltens von der Geschwindigkeit ab, mit welcher sich die Flüssigkeit über den Querschnitt verteilt. In dieser Arbeit wird auf der Grundlage einer mischungstheoretischen Axiomatik ein Modell zur Beschreibung des kapillaren Flüssigkeitstransportes in Papier vorgeschlagen, dessen Homogenisierungsgrad einerseits den wesentlichen Einflüssen des Porenraumes auf das Transportverhalten Rechnung trägt, andererseits Einzelheiten nur soweit einbezieht, als sie sich einer Identifikation erschließen. Ein wesentliches Merkmal des strukturübergreifend formulierten Ansatzes besteht in der Einführung von Volumenanteilen für die Konstituierenden des als Mehrphasenkörper betrachteten teilgesättigten porösen Mediums. In Bezug auf die Formulierung eines makroskopischen Bewegungsgesetzes für den teilgesättigten Flüssigkeitstransport sowie hinsichtlich der Annahmen, welche die konstitutiven Beziehungen betreffen, wird auf den MUSKATschen Ansatz zurückgegriffen, wie er sich auf den Gebieten der Hydrologie bzw. der Bodenphysik bewährt hat. Mit der Vernachlässigbarkeit des Schwerkrafteinflusses sowie der Annahme einer kompressionsfreien Verdrängung der im Porenraum enthaltenen Luft ergeben sich gegenüber einem allgemeinen Zweiphasentransportproblem Vereinfachungen in der mathematischen Beschreibung: Die von der Luftströmung entkoppelte Betrachtung der Flüssigkeitsbewegung mündet in eine Transportgleichung vom Typ einer nichtlinearen Wärmeleitungsgleichung. Zur Lösung dieser parabolischen Differentialgleichung für das Anfangs-Randwert-Problem, wie es den obengenannten Ausbreitungsvorgang beschreibt, wurde das Heat-Transfer-Tool des kommerziellen Finite-Element-Programms MARC eingesetzt. Auf der Grundlage experimentell ermittelter Porengrößenverteilungsdichten gelang eine näherungsweise Bestimmung der Transportkoeffizienten sowie der konstitutiven Beziehungen.
3

Development of a new type of highly porous oxygen carrier support for fluidized bed reactors

van Garderen, Noémie 03 April 2013 (has links) (PDF)
The production of fuel and chemicals is expected to be based on renewable energies in the next few years. However, combustion causes CO2 emission. Its reduction is one of the main focuses to regulate greenhouse effect, as expected by the Kyoto protocol. One combustion technology which could reduce CO2 emissions is chemical-looping combustion coupled to a CO2 capture device. This technique involves the use of a bed-material, with a size between 100 and 500 µm, composed of an oxide supported by a porous ceramic. This oxide acts as an oxygen carrier and circulates from a reducing atmosphere reactor, where oxygen reacts with CO to produce CO2, to an oxidising reactor, where combustion occurs. In order to improve the reactivity of this carrier, a fluidized bed reactor is used and involves gas velocity. Attrition resistant granulates are therefore needed because of the high impacts occurring in the reactors. Moreover, large pore network is expected to improve the reactivity of the carrier because of the higher accessibility of the gas. Granulates studied for oxygen carrier supports are frequently based on γ-alumina, which is highly mesoporous. In order to understand the importance of microstructure, three different routes were studied with samples composed of macropores, mesopores and a sample composed of both type of pores. Pore size could be successfully tailored with addition of diatomite, composed of pores in the micrometer range. This thesis aims to describe the tailoring of microstructure with addition of diatomite and at understanding its influence on attrition resistance. To be able to verify the performance of the developed supports, impregnation of copper oxide and looping experiments were performed.
4

Experimentelle und numerische Untersuchungen zur stabilen Entsorgung von Schwachgasen in porösen Verbrennungsreaktoren

Endisch, Matthias 15 November 2013 (has links) (PDF)
Deponierte Abfälle emittieren auch Dekaden nach dem Ende der Einlagerung am Standort eine Vielzahl von Schadstoffen. Durch verantwortungsvollen Aufbau und Betrieb oder eine nachträgliche Sanierung kann das Gewicht von unkontrollierten Emissionen hin zu kontrollierten verschoben werden, die wiederum einer entsprechenden Entsorgung zugeführt werden können. Neben dem Deponiesickerwasser spielt das Deponiegas mit den Hauptbestandteilen Methan und Kohlendioxid auf Grund des lokalen und globalen (anthropogener Treibhauseffekt) Gefährdungspotentials eine wichtige Rolle. Sowohl die Gasmenge als auch der Gehalt an brennbaren Methan verringern sich mit zunehmender Standzeit der Deponie. Für Stark- und Mittelgase (ca. 25-60 Vol.-% Methan) ist eine entsprechende Nutzungs- und Entsorgungstechnik etabliert. Für den Schwachgasbereich ist die Entsorgung durch Verbrennung auf Grund der schlechten Verbrennungseigenschaften problematisch. Es existieren einige Lösungsansätze, von denen sich jedoch angesichts verschiedener technologiebedingter Nachteile noch keiner für die Schwachgasentsorgung über den gesamten relevanten Bereich an Methangehalten etablieren konnte. Ziel der vorliegenden Arbeit war es, einen neuen Ansatz für eine einfache, kostengünstige und robuste Technologie zu erarbeiten, die eine vollständige Eliminierung des Methans und weiterer schädlicher Bestandteile gewährleistet. Im Weiteren sollen Methangehalte im Deponiegas von 5-11 Vol.-% bzw. Modellgemische mit einem Äquivalenzverhältnis von 0,3-0,5 betrachtet werden. Dieser Bereich erweist sich als besonders problematisch hinsichtlich einer stabilen Entsorgung. Bei Grubengasen und methanbeladener Abluft sind unter Umständen ähnliche Fragestellungen anzutreffen. Neben experimentellen Arbeiten in Labor und Technikum liefern vor allem numerische Simulationen einen wesentlichen Beitrag zur wissenschaftlichen Durchdringung der ablaufenden Prozesse und der Vorausberechnung technischen Reaktoren und Brennern. Für hier behandelte Problemstellung bietet sich die Software Ansys Fluent® an. Für die Entsorgung von Schwachgasen bieten sich mehrere grundsätzliche Herangehensweisen an. Für diese Arbeit wurde sich auf die Oxidation des Methans in porösen Medien, z.B. Füllkörperschüttungen oder offenzellige SiC-Schaumkeramiken, konzentriert. In einem ersten Ansatz wurde eine katalytische Funktionalisierung von SiC-Schaumkeramik mit Manganoxid dotierter Calciumaluminat-Beschichtung durchgeführt, um so die hervorragenden thermischen Eigenschaften des Siliciumcarbids mit der Oxidationsaktivität eines Katalysators zu kombinieren. Nach der Evaluierung einer optimalen hochtemperaturfesten Katalysatorkombination und experimentellen Erarbeitung kinetischer Parameter bilden Modellrechnungen im einfach durchströmten Monolith (1D) die Basis für eine Beurteilung dieser Variante. Der zweite Ansatz verfolgt eine nicht-katalytische, rein thermische Umsetzung des Methans. Eine Verbesserung der Verbrennungseigenschaften durch Vorwärmung des Brenngases erfolgt über interne Rekuperation ohne externen Abgaswärmeübertrager. Auf Basis von theoretischen Überlegungen und Simulationsrechnungen wurde eine entsprechende Technikumsanlage mit einer aus Alumina-Raschig-Ringen bestehenden porösen Matrix entworfen und aufgebaut. Ausgewählte Versuchsreihen dienten zur Demonstration der Funktionalität und zur Validierung des CFD-Modells. Mit Hilfe des Modells sind eine Variation der Eigenschaften der porösen Matrix und ein Upscaling auf einen technischen Maßstab möglich. Die Berechnung des Einsatzbereiches erfolgt beispielhaft mit einem Vorschlag für eine technisch relevante Größe an einem typischen Deponie-Schwachgas. Für die Modellierung von Oxidationsprozessen in porösen Strukturen ist die Implementierung des Wärmetransports ein wesentlicher Baustein. Ein entscheidender Parameter hierin ist die effektive Wärmeleitfähigkeit der porösen Matrix. Insbesondere für keramische Schäume ist die Anzahl der publizierten Arbeiten gering. Durch Vermessung der SiC-Keramikschäume mit Hilfe der Hot-Disk-Methode (Raumtemperatur) und mit dem Plattenmessverfahren (300-1000 °C) konnte auch an dieser Stelle ein Beitrag erbracht werden.
5

A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy / Ein numerisches Modell für das Fließverhalten von selbstverdichtendem Beton in bewehrten Zonen: eine Analogie zu porösen Medien

Vasilic, Ksenija 01 February 2016 (has links) (PDF)
This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. / Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen.
6

A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy

Vasilic, Ksenija 01 February 2016 (has links)
This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. / Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen.
7

Development of a new type of highly porous oxygen carrier support for fluidized bed reactors

van Garderen, Noémie 05 February 2013 (has links)
The production of fuel and chemicals is expected to be based on renewable energies in the next few years. However, combustion causes CO2 emission. Its reduction is one of the main focuses to regulate greenhouse effect, as expected by the Kyoto protocol. One combustion technology which could reduce CO2 emissions is chemical-looping combustion coupled to a CO2 capture device. This technique involves the use of a bed-material, with a size between 100 and 500 µm, composed of an oxide supported by a porous ceramic. This oxide acts as an oxygen carrier and circulates from a reducing atmosphere reactor, where oxygen reacts with CO to produce CO2, to an oxidising reactor, where combustion occurs. In order to improve the reactivity of this carrier, a fluidized bed reactor is used and involves gas velocity. Attrition resistant granulates are therefore needed because of the high impacts occurring in the reactors. Moreover, large pore network is expected to improve the reactivity of the carrier because of the higher accessibility of the gas. Granulates studied for oxygen carrier supports are frequently based on γ-alumina, which is highly mesoporous. In order to understand the importance of microstructure, three different routes were studied with samples composed of macropores, mesopores and a sample composed of both type of pores. Pore size could be successfully tailored with addition of diatomite, composed of pores in the micrometer range. This thesis aims to describe the tailoring of microstructure with addition of diatomite and at understanding its influence on attrition resistance. To be able to verify the performance of the developed supports, impregnation of copper oxide and looping experiments were performed.
8

Experimentelle und numerische Untersuchungen zur stabilen Entsorgung von Schwachgasen in porösen Verbrennungsreaktoren: Experimentelle und numerische Untersuchungen zur stabilen Entsorgung von Schwachgasen in porösen Verbrennungsreaktoren

Endisch, Matthias 05 July 2013 (has links)
Deponierte Abfälle emittieren auch Dekaden nach dem Ende der Einlagerung am Standort eine Vielzahl von Schadstoffen. Durch verantwortungsvollen Aufbau und Betrieb oder eine nachträgliche Sanierung kann das Gewicht von unkontrollierten Emissionen hin zu kontrollierten verschoben werden, die wiederum einer entsprechenden Entsorgung zugeführt werden können. Neben dem Deponiesickerwasser spielt das Deponiegas mit den Hauptbestandteilen Methan und Kohlendioxid auf Grund des lokalen und globalen (anthropogener Treibhauseffekt) Gefährdungspotentials eine wichtige Rolle. Sowohl die Gasmenge als auch der Gehalt an brennbaren Methan verringern sich mit zunehmender Standzeit der Deponie. Für Stark- und Mittelgase (ca. 25-60 Vol.-% Methan) ist eine entsprechende Nutzungs- und Entsorgungstechnik etabliert. Für den Schwachgasbereich ist die Entsorgung durch Verbrennung auf Grund der schlechten Verbrennungseigenschaften problematisch. Es existieren einige Lösungsansätze, von denen sich jedoch angesichts verschiedener technologiebedingter Nachteile noch keiner für die Schwachgasentsorgung über den gesamten relevanten Bereich an Methangehalten etablieren konnte. Ziel der vorliegenden Arbeit war es, einen neuen Ansatz für eine einfache, kostengünstige und robuste Technologie zu erarbeiten, die eine vollständige Eliminierung des Methans und weiterer schädlicher Bestandteile gewährleistet. Im Weiteren sollen Methangehalte im Deponiegas von 5-11 Vol.-% bzw. Modellgemische mit einem Äquivalenzverhältnis von 0,3-0,5 betrachtet werden. Dieser Bereich erweist sich als besonders problematisch hinsichtlich einer stabilen Entsorgung. Bei Grubengasen und methanbeladener Abluft sind unter Umständen ähnliche Fragestellungen anzutreffen. Neben experimentellen Arbeiten in Labor und Technikum liefern vor allem numerische Simulationen einen wesentlichen Beitrag zur wissenschaftlichen Durchdringung der ablaufenden Prozesse und der Vorausberechnung technischen Reaktoren und Brennern. Für hier behandelte Problemstellung bietet sich die Software Ansys Fluent® an. Für die Entsorgung von Schwachgasen bieten sich mehrere grundsätzliche Herangehensweisen an. Für diese Arbeit wurde sich auf die Oxidation des Methans in porösen Medien, z.B. Füllkörperschüttungen oder offenzellige SiC-Schaumkeramiken, konzentriert. In einem ersten Ansatz wurde eine katalytische Funktionalisierung von SiC-Schaumkeramik mit Manganoxid dotierter Calciumaluminat-Beschichtung durchgeführt, um so die hervorragenden thermischen Eigenschaften des Siliciumcarbids mit der Oxidationsaktivität eines Katalysators zu kombinieren. Nach der Evaluierung einer optimalen hochtemperaturfesten Katalysatorkombination und experimentellen Erarbeitung kinetischer Parameter bilden Modellrechnungen im einfach durchströmten Monolith (1D) die Basis für eine Beurteilung dieser Variante. Der zweite Ansatz verfolgt eine nicht-katalytische, rein thermische Umsetzung des Methans. Eine Verbesserung der Verbrennungseigenschaften durch Vorwärmung des Brenngases erfolgt über interne Rekuperation ohne externen Abgaswärmeübertrager. Auf Basis von theoretischen Überlegungen und Simulationsrechnungen wurde eine entsprechende Technikumsanlage mit einer aus Alumina-Raschig-Ringen bestehenden porösen Matrix entworfen und aufgebaut. Ausgewählte Versuchsreihen dienten zur Demonstration der Funktionalität und zur Validierung des CFD-Modells. Mit Hilfe des Modells sind eine Variation der Eigenschaften der porösen Matrix und ein Upscaling auf einen technischen Maßstab möglich. Die Berechnung des Einsatzbereiches erfolgt beispielhaft mit einem Vorschlag für eine technisch relevante Größe an einem typischen Deponie-Schwachgas. Für die Modellierung von Oxidationsprozessen in porösen Strukturen ist die Implementierung des Wärmetransports ein wesentlicher Baustein. Ein entscheidender Parameter hierin ist die effektive Wärmeleitfähigkeit der porösen Matrix. Insbesondere für keramische Schäume ist die Anzahl der publizierten Arbeiten gering. Durch Vermessung der SiC-Keramikschäume mit Hilfe der Hot-Disk-Methode (Raumtemperatur) und mit dem Plattenmessverfahren (300-1000 °C) konnte auch an dieser Stelle ein Beitrag erbracht werden.

Page generated in 0.0321 seconds