Spelling suggestions: "subject:"poroélastique"" "subject:"aéroélastiques""
1 |
Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiquesEzziani, Abdelaâziz 08 February 2005 (has links) (PDF)
Nous nous intéressons à la modélisation de la propagation d'ondes dans le sous sol. Nous présentons deux modèles de propagation : (i) une généralisation du modèle de Zener pour les milieux viscoélastiques, (ii) le modèle de Biot pour les milieux poroélastiques. Nous menons une analyse mathématique complète de ces modèles : résultat d'existence, d'unicité et de décroissance de l'énergie. Pour la résolution numérique nous construisons une méthode spécifique à chaque modèle, basée sur des approches variationnelles, une approximation par éléments finis mixtes en espace et différences finies en temps. Nous montrons pour chaque schéma, un résultat de décroissance d'énergie discrète qui conduit à une condition suffisante de stabilité. Pour simuler la propagation d'ondes dans les milieux ouverts, nous adaptons la technique de couches absorbantes parfaitement adaptées aux ondes viscoélastiques et poroélastiques. Enfin, nous présentons des validations numériques des méthodes développées.
|
2 |
Propagation des ondes sismiques dans les milieux multiphasiques hétérogènes : modélisation numérique, sensibilité et inversion des paramètres poroélastiques / Seismic wave propagation in heterogeneous multiphasic media : numerical modelling, sensibility and inversion of poroelastic parametersDupuy, Bastien 25 November 2011 (has links)
La propagation des ondes sismiques dans les milieux poreux multiphasiques présente des enjeux nombreux, tant sur le plan environnemental (risques naturels, géotechnique, pollutions de nappes...) que pour les réservoirs (aquifères, hydrocarbures, stockages de CO2...). L'utilisation des ondes sismiques pour étudier ces milieux se justifie par le fait qu'en se propageant, les ondes sont déformées par le milieu qu'elles traversent et contiennent ainsi des informations aux capteurs sur les phases fluides et solides et sur le squelette poreux. Ce travail de thèse s'intéresse aux caractéristiques des ondes sismiques dans les milieux multiphasiques (plusieurs phases fluides et solides), depuis la description physique jusqu'à la caractérisation des paramètres constitutifs par inversion, en passant par la modélisation numérique 2D de la propagation. La première partie du travail a consisté à décrire la physique des milieux multiphasiques (phase par phase et leurs intéractions dynamiques) en utilisant des méthodes d'homogénéisation pour se ramener à un milieu équivalent défini par sept paramètres. Ainsi, dans des milieux simple porosité saturés et dans des milieux plus complexes (double porosité, partiellement saturés ou visco-poroélastiques), je peux calculer la propagation des ondes sismiques sans approximation. En effet, j'utilise une méthode numérique dans le domaine fréquence-espace qui permet de prendre en compte tous les termes qui dépendent de la fréquence sans approximation. La discrétisation spatiale utilise une méthode d'éléments finis discontinus (Galerkin discontinu) qui permet de considérer des milieux hétérogènes.Je montre notamment que les attributs sismiques (vitesses et atténuations) des milieux poreux complexes sont fortement dispersifs et les formes d'ondes complètes, calculées sans approximation, sont fortement dépendantes de la description physique du milieu. La caractérisation des paramètres poroélastiques s'effectue par inversion. Une méthode en deux étapes a été proposée : la première consiste en une inversion ``classique`` (tomographie, inversion des formes d'ondes complètes) des données (sismogrammes) pour obtenir des paramètres macro-échelles (attributs sismiques). La seconde étape permet de reconstruire, à partir des paramètres macro-échelles, les paramètres poroélastiques micro-échelles. Cette étape d'inversion utilise une méthode d'optimisation semi-globale (algorithme de voisinage). Une analyse de sensibilité montre qu'en connaissant a-priori certains paramètres, on peut inverser avec précision les paramètres du squelette poroélastique ou retrouver la nature du fluide saturant, à partir des vitesses de propagation. En revanche, pour retrouver la saturation en fluide, il est préférable de connaître les atténuations. Deux applications réalistes (monitoring de réservoir et hydrogéophysique) mettent en oeuvre ce type d'inversion en deux étapes et démontrent qu'à partir de données estimées par des méthodes classiques d'imagerie, on peut remonter à certains paramètres poroélastiques constitutifs. / Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and ressources (aquifers, oil and gas, CO2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several upscaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poroelasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretisation employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poroelastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macroscale parameters, the poroelastic micro-scale properties. This downscaling step uses a semi-global optimisation method (neighbourhood algorithm), which allows the sampling of the full model space (thanks to the low numerical cost of the analytic direct model). With the a-priori knowledge of some parameters, a sensibility analysis shows that I can invert precisely skeleton parameters or the saturating fluid type, from the velocities only. Nevertheless, to recover the fluid saturation, it is preferable to use the attenuations. This two-steps procedure is tested on two realistic applications (reservoir monitoring and subsurface hydrogeophysics) and show that we can recover some constituve poroelastic parameters.
|
3 |
Propagation des ondes sismiques dans les milieux multiphasiques hétérogènes : modélisation numérique, sensibilité et inversion des paramètres poroélastiquesDupuy, Bastien 25 November 2011 (has links) (PDF)
La propagation des ondes sismiques dans les milieux poreux multiphasiques présente des enjeux nombreux, tant sur le plan environnemental (risques naturels, géotechnique, pollutions de nappes...) que pour les réservoirs (aquifères, hydrocarbures, stockages de CO2...). L'utilisation des ondes sismiques pour étudier ces milieux se justifie par le fait qu'en se propageant, les ondes sont déformées par le milieu qu'elles traversent et contiennent ainsi des informations aux capteurs sur les phases fluides et solides et sur le squelette poreux. Ce travail de thèse s'intéresse aux caractéristiques des ondes sismiques dans les milieux multiphasiques (plusieurs phases fluides et solides), depuis la description physique jusqu'à la caractérisation des paramètres constitutifs par inversion, en passant par la modélisation numérique 2D de la propagation. La première partie du travail a consisté à décrire la physique des milieux multiphasiques (phase par phase et leurs intéractions dynamiques) en utilisant des méthodes d'homogénéisation pour se ramener à un milieu équivalent défini par sept paramètres. Ainsi, dans des milieux simple porosité saturés et dans des milieux plus complexes (double porosité, partiellement saturés ou visco-poroélastiques), je peux calculer la propagation des ondes sismiques sans approximation. En effet, j'utilise une méthode numérique dans le domaine fréquence-espace qui permet de prendre en compte tous les termes qui dépendent de la fréquence sans approximation. La discrétisation spatiale utilise une méthode d'éléments finis discontinus (Galerkin discontinu) qui permet de considérer des milieux hétérogènes.Je montre notamment que les attributs sismiques (vitesses et atténuations) des milieux poreux complexes sont fortement dispersifs et les formes d'ondes complètes, calculées sans approximation, sont fortement dépendantes de la description physique du milieu. La caractérisation des paramètres poroélastiques s'effectue par inversion. Une méthode en deux étapes a été proposée : la première consiste en une inversion ''classique'' (tomographie, inversion des formes d'ondes complètes) des données (sismogrammes) pour obtenir des paramètres macro-échelles (attributs sismiques). La seconde étape permet de reconstruire, à partir des paramètres macro-échelles, les paramètres poroélastiques micro-échelles. Cette étape d'inversion utilise une méthode d'optimisation semi-globale (algorithme de voisinage). Une analyse de sensibilité montre qu'en connaissant a-priori certains paramètres, on peut inverser avec précision les paramètres du squelette poroélastique ou retrouver la nature du fluide saturant, à partir des vitesses de propagation. En revanche, pour retrouver la saturation en fluide, il est préférable de connaître les atténuations. Deux applications réalistes (monitoring de réservoir et hydrogéophysique) mettent en oeuvre ce type d'inversion en deux étapes et démontrent qu'à partir de données estimées par des méthodes classiques d'imagerie, on peut remonter à certains paramètres poroélastiques constitutifs.
|
4 |
Analysis and control of elastic waves in phononic structures of poroelastic inclusions in a fluid / Analyse et contrôle des ondes élastiques dans une structure phononique constituée d’inclusions poroélastiques dans un fluide.Alevizaki, Athina 28 September 2018 (has links)
Dans le présent document de thèse, une extension de la méthode de calcul de la diffusion multiple stratifiée est développée en y incluant des structures phononiques à base de diffuseurs sphériques poroélastiques saturés immergés dans un fluide, en combinant la théorie de Biot avec le formalisme de diffusion multiple. La méthode est alors appliquée à une étude théorique, bien au-delà de l’approximation à grandes longueurs d’onde d’un milieu effectif, de la réponse acoustique d’un milieu granulaire à double porosité saturé, formé d’un réseau cristallin compact de sphères poreuses rigides ou molles. On montre que la variation de la taille des pores et/ou celle de la porosité dans une gamme allant du millimètre au micromètre pour le diamètre des sphères altère d’une façon significative les spectres de transmission, réflexion, et d’absorption d’une couche plane d’épaisseur finie de ces matériaux. Les spectres présentés sont analysés par référence aux modes acoustiques de sphères poreuses isolées d’une part, puis par rapport aux diagrammes de dispersion des cristaux infinis correspondants. Une interprétation cohérente de la physique sous-jacente est donnée. Ces résultats mettent en évidence l’occurrence de nouveaux modes, localisés dans la sphère, provenant des ondes longitudinales lentes propres aux milieux poroélastiques. Ces modes induisent quelques caractéristiques remarquables dans le comportement acoustique de ces matériaux à double porosité, comme des bandes d’absorption non-dispersive larges ou étroites en fréquence et/ou des bandes d’arrêt directionnel. Les propriétés acoustiques de ces structures phononiques à l’échelle sub-micrométrique, i.e. en régime hypersonique (GHz), peuvent être évaluées expérimentalement par diffusion Brillouin. Dans ce document, une approche théorique élasto-optique rigoureuse, basée sur les fonctions de Green, est proposée afin de décrire la diffusion inélastique de la lumière due aux variations spatiotemporelles de l’indice de réfraction du matériau induites par des phonons. Dans ce cadre des expressions analytiques de l’intensité d’un faisceau de lumière diffusé par une particule sphérique dans le vide sont dérivées, permettant ainsi d’améliorer la précision et rapidité des calculs précédents. Les grandes lignes de ce développement théorique jettent les bases pour une description rigoureuse de cet effet dans le cas de cristaux phononiques composés de particules sphériques colloïdales. / In the present thesis, an extension of the layer multiple scattering computational methodology to phononic structures of fluid-saturated poroelastic spherical bodies, combining Biot's theory with multiple scattering techniques, is developed. The method is applied to the theoretical study, beyond the long wavelength effective-medium approximation, of the acoustic response of double-porosity liquid-saturated granular materials consisting of close-packed hard or soft porous spheres. It is shown that variations of the pore size and/or the porosity within the millimeter and submillimeter-sized spherical grains signicantly alters the transmission, reflection, and absorption spectra of finite slabs of these materials. The calculated spectra are analyzed by reference to the acoustic modes of the constituent porous spherical grains as well as to relevant dispersion diagrams of correspondingly infinite crystals, and a consistent interpretation of the underlying physics is presented. Our results provide evidence for the occurrence of novel, unprecedented modes, localized in the sphere, which arise from slow longitudinal waves that are peculiar to poroelastic media. These modes induce some remarkable features in the acoustic behavior of these double-porosity materials under study, such as broad or narrow dispersionless absorption bands and/or directional transmission gaps. The acoustic properties of phononic (sub)micro structures, in the hypersonic (GHz) regime, can be probed, in general, by Brillouin light scattering experiments. In the present thesis we undertake a rigorous full elasto-optic theoretical approach to inelastic light scattering due to phonon induced spatiotemporal variations of the refractive index of a medium, based on Green's functions, and derive analytical expressions for the intensities of the scattered light beams by single spherical particles in vacuum, thus improving the computational efficiency and accuracy of previous calculations. The above framework provides, also, the basis for a rigorous description of the effect for phononic crystals of colloidal spherical particles.
|
5 |
Efficient Finite Element Approach for Structural-Acoustic Applications including 3D modelling of Sound Absorbing Porous MaterialsRumpler, Romain January 2012 (has links)
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis. / Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développement de méthodes de résolution efficaces par éléments finis, pour des problèmes de vibroacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences. L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse est de proposer une approche modale pour la réduction du problème poroélastique, bien que l’adéquation d’une telle approche avec le comportement dynamique des matériaux poreux soit à démontrer.Dans un premier temps, la résolution de problèmes couplés élasto-poro-acoustiques par sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche modale originale proposée pour les milieux poroélastiques, ainsi qu’une procédure de sélection des modes significatifs, sont validées sur des exemples 1D à 3D.Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits précédemment établis avec une procédure d’approximation de solution par approximants de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accroître les performances de la résolution (allocation mémoire et ressources en temps de calcul).Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un problème académique 3D, mettant en valeur leurs performances encourageantes. Afin d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de recherche sont apportées en conclusion. / <p>QC 20120224</p> / FP6 Marie-Curie Smart Structures / FP7 Marie-Curie Mid-Frequency
|
6 |
Efficient finite element approach for structural-acoustic applicationns including 3D modelling of sound absorbing porous materials / Modélisation de problèmes de vibro-acoustique interne avec traitement poroélastique : approche efficace par la méthode des éléments finisRumpler, Romain 13 March 2012 (has links)
Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développement de méthodes de résolution efficaces par éléments finis, pour des problèmes de vibroacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences. L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse est de proposer une approche modale pour la réduction du problème poroélastique, bien que l’adéquation d’une telle approche avec le comportement dynamique des matériaux poreux soit à démontrer. Dans un premier temps, la résolution de problèmes couplés élasto-poro-acoustiques par sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche modale originale proposée pour les milieux poroélastiques, ainsi qu’une procédure de sélection des modes significatifs, sont validées sur des exemples 1D à 3D. Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits précédemment établis avec une procédure d’approximation de solution par approximants de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accroître les performances de la résolution (allocation mémoire et ressources en temps de calcul). Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un problème académique 3D, mettant en valeur leurs performances encourageantes. Afin d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de recherche sont apportées en conclusion. / In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
|
Page generated in 0.0477 seconds