41 |
A High-Efficiency Hybrid Resonant Microconverter for Photovoltaic Generation SystemsLaBella, Thomas Matthew 18 September 2014 (has links)
The demand for increased renewable energy production has led to increased photovoltaic (PV) installations worldwide. As this demand continues to grow, it is important that the costs of PV installations decrease while the power output capability increases. One of the components in PV installations that has lots of room for improvement is the power conditioning system. The power conditioning system is responsible for converting the power output of PV modules into power useable by the utility grid while insuring the PV array is outputting the maximum available power. Modular power conditioning systems, where each PV module has its own power converter, have been proven to yield higher output power due to their superior maximum power point tracking capabilities. However, this comes with the disadvantages of higher costs and lower power conversion efficiencies due to the increased number of power electronics converters. The primary objective of this dissertation is to develop a high-efficiency, low cost microconverter in an effort to increase the output power capability and decrease the cost of modular power conditioning systems.
First, existing isolated dc-dc converter topologies are explored and a new topology is proposed based on the highly-efficient series resonant converter operating near the series resonant frequency. Two different hybrid modes of operation are introduced in order to add wide input-voltage regulation capability to the series resonant converter while achieving high efficiency through low circulating currents, zero-current switching (ZCS) of the output diodes, zero-voltage switching (ZVS) and/or ZCS of the primary side active switches, and direct power transfer from the source to the load for the majority of the switching cycle. Each operating mode is analyzed in detail using state-plane trajectory plots. A systematic design approach that is unique to the newly proposed converter is presented along with a detailed loss analysis and loss model. A 300-W microconverter prototype is designed to experimentally validate the analysis and loss model. The converter featured a 97.7% weighted California Energy Commission (CEC) efficiency with a nominal input voltage of 30 V. This is higher than any other reported CEC efficiency for PV microconverters in literature to date.
Each operating mode of the proposed converter can be controlled using simple fixed-frequency pulse-width modulation (PWM) based techniques, which makes implementation of control straightforward. Simplified models of each operating mode are derived as well as control-to-input voltage transfer functions. A smooth transition method is then introduced using a two-carrier PWM modulator, which allows the converter to transition between operating modes quickly and smoothly. The performance of the voltage controllers and transition method were verified experimentally.
To ensure the proposed converter is compatible with different types of modular power conditioning system architectures, system-level interaction issues associated with different modular applications are explored. The first issue is soft start, which is necessary when the converter is beginning operation with a large capacitive load. A novel soft start method is introduced that allows the converter to start up safely and quickly, even with a short-circuited output. Maximum power point tracking and double line frequency ripple rejection are also explored, both of which are very important to ensuring the PV module is outputting the maximum amount of available power.
Lastly, this work deals with efficiency optimization of the proposed converter. It is possible to use magnetic integration so that the resonant inductor can be incorporated into the isolation transformer by way of the transformer leakage inductance in order to reduce parts count and associated costs. This chapter, however, analyzes the disadvantages to this technique, which are increased proximity effect losses resulting in higher conduction losses. A new prototype is designed and tested that utilizes an external resonant inductor and the CEC efficiency was increased from 97.7% to 98.0% with a marginal 1.8% total cost increase. Additionally, a variable frequency efficiency optimization algorithm is proposed which increases the system efficiency under the high-line and low-line input voltage conditions. This algorithm is used for efficiency optimization only and not control, so the previously presented simple fixed-frequency modeling and control techniques can still be utilized. / Ph. D.
|
42 |
Control of Power Conversion Systems for the Intentional Islanding of Distributed Generation UnitsThacker, Timothy Neil 13 January 2006 (has links)
Within the past decade, talk has arisen of shifting the utility grid from centralized, radial sources to a distributed network of sources, also known as distributed generation (DG); in the wake of deregulation, the California energy crisis, and northeastern blackouts.
Existing control techniques for DG systems are designed to operate a system either in the connected or disconnected (islanding) mode to the utility; thus not allowing for both modes to be implemented and transitioned between. Existing detection and re-closure algorithms can also be improved upon. Dependent upon the method implemented, detection algorithms can either cause distortions in the output or completely miss a disturbance. The present re-closure process to reconnect to the utility is to completely shutdown and wait five minutes. The proposed methods of this study improve upon existing methods, via simulation and hardware experimentation, for DG systems that can intentionally islanding themselves.
The proposed, "switched-mode", control allows for continuous operation of the system during disturbances by transitioning the mode of control to reflect the change in the system mode (grid-connected or islanding). This allows for zero downtimes without detrimental transients.
The proposed detection method can sense disturbances that other methods cannot; and within 25 ms (approximately 1.5 line-cycles at 60 Hz). This method is an improvement over other methods because it eliminates the need to purposely distort the outputs to sense a disturbance.
The proposed re-closure method is an improvement over the existing method due to the fact that it does not require the system to de-energize before re-synchronizing and reconnecting to the utility. This allows for DGs to continuously supply power to the system without having to shut down. Results show that the system is generally ready to reconnect after 2 to 5 line cycles. / Master of Science
|
43 |
Digital control algorithms : low power wind turbine energy maximizer for charging lead acid batteriesHamilton, Christopher 01 January 2009 (has links)
Fossil fuel consumption throughout the world is drawing attention to the need for alternative energy sources to provide for the large demand for energy. It is becoming more apparent everyday that fossil fuels are unreliable sources of energy due to the volatile pricing of such commodities as well as the toll that these energy sources take on the environment.
Fossil fuels are non-renewable sources of energy that when burned to create energy produce bi-products that are extremely harmful to the global environment. Today, renewable energy sources such as wind and solar energy are playing larger roles as sources of electricity and are providing new jobs as well as research opportunities both in academia and in industry. It is for this reason that wind turbine energy harvesting is the topic of this thesis and how the efficiency of wind turbine power conversion systems can be improved to become a more viable source of energy.
Large wind turbines, along with their power conversion electronics, exist today for the sole purpose of serving a large population of consumers with "green" electricity. Unfortunately, systems designed for low power wind turbines do not utilize advanced methods of maximizing energy draw from wind turbines both from hardware and software point of views. This theses is presents a method of efficient energy extraction and conversion from low power wind turbines to charge lead ac id batteries.
|
44 |
Triphenylamine-based hole transport materials for perovskite solar cellsFuentes Pineda, Rosinda January 2018 (has links)
The rapid development in perovskite solar cells (PSC) has generated a tremendous interest in the photovoltaic community. The power conversion efficiency (PCE) of these devices has increased from 3.8% in 2009 to a recent certified efficiency of over 20% which is mainly the product of the remarkable properties of the perovskite absorber material. One of the most important advances occurred with the replacement of the liquid electrolyte with a solid state hole conductor which enhanced PCE values and improved the device stability. Spiro-OMeTAD (2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)- 9,9'-spirobifluorene) is the most common hole transport material in perovskite solar cells. Nevertheless, the poor conductivity, low charge transport and expensive synthetic procedure and purification have limited its commercialisation. Triphenylamines (TPA) like Spiro-OMeTAD are commonly employed due to the easy oxidation of the nitrogen centre and good charge transport. Other triarylamines have similar properties to Spiro-OMeTAD but are easier to synthesise. The aim of this doctoral thesis is to investigate different types of hole transport materials in perovskite solar cells. Three different series of triphenylamine-based HTM were designed, synthesised, characterised and studied their function in perovskite solar cells. A series of five diacetylide-triphenylamine (DATPA) derivatives (Chapter 3) with different alkyl chain length in the para position was successfully synthesised through a five step synthesis procedure. A range of characterisation techniques was carried out on the molecules including; optical, electrochemical, thermal and computational methods. The results show that the new HTMs have desirable optical and electrochemical properties, with absorption in the UV, a reversible redox property and a suitable highest occupied molecular orbital (HOMO) energy level for hole transport. Perovskite solar cell device performances were studied and discussed in detail. This project studied the effect of varying the alkyl chain length on structurally similar triarylamine-based hole transport materials on their thermal, optical, electrochemical and charge transport properties as well as their molecular packing and solar cell parameters, thus providing insightful information on the design of hole transport materials in the future. The methoxy derivative showed the best semiconductive properties with the highest charge mobility, better interfacial charge transfer properties and highest PCE value (5.63%). The use of p-type semiconducting polymers are advantageous over small molecules because of their simple deposition, low cost and reproducibility. Styrenic triarylamines (Chapter 4) were prepared by the Hartwig-Buchwald coupling followed by their radical polymerization. All monomers and polymers were fully characterised through electrochemical, spectroscopic and computational techniques showing suitable HOMO energy levels and desirable optoelectrochemical properties. The properties and performance of these monomers and polymers as HTMs in perovskite solar cells were compared in terms of their structure. Despite the lower efficiencies, the polymers showed superior reproducibility on each of the device parameters in comparison with the monomers and spiro-OMeTAD. Finally, star-shaped structures combine the advantages of both small molecules, like well-defined structures and physical properties, and polymers such as good thermal stability. Two star-shaped triarylamine-based molecules (Chapter 5) were synthesised, fully characterised and their function as hole-transport materials in perovskite solar cells studied. These materials afford a PCE of 13.63% and high reproducibility and device stability. In total this work provided three series of triarylamine-based hole transport materials for perovskite solar cells application and enabled a comparison of the pros and cons of different design structures: small-molecule, polymeric and star-shaped.
|
45 |
High-Efficiency Self-Adjusting Switched Capacitor DC-DC Converter with Binary ResolutionKushnerov, Alexander 04 March 2010 (has links) (PDF)
Switched-Capacitor Converters (SCC) suffer from a fundamental power loss deficiency which make their use in some applications prohibitive. The power loss is due to the inherent energy dissipation when SCC operate between or outside their output target voltages. This drawback was alleviated in this work by developing two new classes of SCC providing binary and arbitrary resolution of closely spaced target voltages. Special attention is paid to SCC topologies of binary resolution. Namely, SCC systems that can be configured to have a no-load output to input voltage ratio that is equal to any binary fraction for a given number of bits. To this end, we define a new number system and develop rules to translate these numbers into SCC hardware that follows the algebraic behavior. According to this approach, the flying capacitors are automatically kept charged to binary weighted voltages and consequently the resolution of the target voltages follows a binary number representation and can be made higher by increasing the number of capacitors (bits). The ability to increase the number of target voltages reduces the spacing between them and, consequently, increases the efficiency when the input varies over a large voltage range. The thesis presents the underlining theory of the binary SCC and its extension to the general radix case. Although the major application is in step-down SCC, a simple method to utilize these SCC for step-up conversion is also described, as well as a method to reduce the output voltage ripple. In addition, the generic and unified model is strictly applied to derive the SCC equivalent resistor, which is a measure of the power loss. The theoretical predictions are verified by simulation and experimental results.
|
46 |
Modeling, Control and Protection of Low-Voltage DC MicrogridsSalomonsson, Daniel January 2008 (has links)
Current trends in electric power consumption indicate an increasing use of dc in end-user equipment, such as computers and other electronic appliances used in households and offices. With a dc power system, ac/dc conversion within these loads can be avoided, and losses reduced. AC/DC conversion is instead centralized, and by using efficient, fully controllable power-electronic interfaces, high power quality for both ac and dc systems during steady state and ac grid disturbances can be obtained. Connection of back-up energy storage and small-size generation is also easier to realize in a dc power system. To facilitate practical application, it is important that the shift from ac to dc can be implemented with minimal changes. Results from measurements carried out on common household appliances show that most loads are able to operate with dc supply without any modifications. Furthermore, simple, and yet sufficiently accurate, load models have been derived using the measurement results. The models have been used for further analysis of the dc system, both in steady state and during transients. AC microgrids have gained research interest during the last years. A microgrid is a part of power systems which can operate both connected to the ac grid, and autonomously in island mode when the loads are supplied from locally distributed resources. A low-voltage dc microgrid can be used to supply sensitive electronic loads, since it combines the advantages of using a dc supply for electronic loads, and using local generation to supply sensitive loads. An example of a commercial power system which can benefit from using a dc microgrid is data center. The lower losses due to fewer power conversion steps results in less heat which need to be cooled, and therefore the operation costs are lowered. To ensure reliable operation of a low-voltage dc microgrid, well-designed control and protection systems are needed. An adaptive controller is required to coordinate the different resources based on the load-generation balance in the microgrid, and status of the ac grid. The performance of the developed controller has been studied and evaluated through simulations. The results show that it is possible to extend use of the data center dc microgrid to also support a limited amount of ac loads close to the data center, for example an office building. A protection-system design for low-voltage dc microgrids has been proposed, and different protection devices and grounding methods have been presented. Moreover, different fault types and their impact on the system have been analyzed. The type of protection that can be used depends on the sensitivity of the components in the microgrid. Detection methods for different components have been suggested in order to achieve a fast and accurate fault clearing. An experimental small-scale dc power system has been used to supply different loads, both during normal and fault conditions. A three-phase two-level voltage source converter in series with a Buck converter was used to interconnect the ac and the dc power systems. Together the converters have large controllability, high power quality performance, and allow bi-directional power flow. This topology can preferably be used together with energy storage. The tests confirm the feasibility of using a dc power system to supply sensitive electronic loads. / QC 20100908
|
47 |
Practical Volume-reduction Strategies for Low-power High-frequency Switch Mode Power SuppliesRadic, Aleksandar 01 April 2014 (has links)
The miniaturization of dc–dc switch-mode power supplies (SMPS) is of a key importance in volume-sensitive portable devices, such as cell phones, tablet computers, and digital cameras. In these systems, multiple SMPS are required to provide well regulated voltage and power to various electronic components such as the central processing unit (CPU) and random-access memory (RAM). The combined volume, weight, and surface area footprint of these SMPS is usually the largest component.
Traditionally, SMPS volume reduction has been achieved through increased switching frequencies; however, for power-sensitive applications this is undesirable due to the increased switching losses. This thesis presents two alternative, power-efficient, SMPS miniaturization methods: one control and one topology based.
The presented controller recovers from load transients with virtually minimum possible output voltage deviation, reducing the reactive component size. The controller utilizes a simple algorithm, requiring no knowledge of the converter parameters and virtually no processing power. The simplicity of the control concept enabled the design of an area and power efficient integrated circuit (IC) implementation.
The entire IC is implemented in a CMOS 0.18µm process on a 0.26 mm2 silicon area, which is comparable to the state-of-the-art analog solutions. For the experimental system the deviation (output capacitor size) is about four times smaller than that of a fast PID compensator having a 1/10th of the switching frequency bandwidth.
The second solution is a complementary converter topology that has a smaller output filter volume, improved dynamic response, and lower switching losses compared to the state-of-the-art solutions. To reduce the volume and switching losses, the input-to-output voltage difference is decreased with a capacitive attenuator that replaces the input filter capacitor and has approximately the same volume. Both the attenuator and the downstream buck converter share the same set of switches, minimizing conduction losses. A single multi-mode digital controller governs operation of both stages, seamlessly regulating the output and input center-tap voltages. Experiments with a 5–1.5-V, 2.5-A, 1-MHz prototype show that, compared to the conventional buck, the merged topology has 43% smaller inductor, 36% smaller output capacitor, up to 30% lower power losses, and a 25% faster transient response.
|
48 |
Practical Volume-reduction Strategies for Low-power High-frequency Switch Mode Power SuppliesRadic, Aleksandar 01 April 2014 (has links)
The miniaturization of dc–dc switch-mode power supplies (SMPS) is of a key importance in volume-sensitive portable devices, such as cell phones, tablet computers, and digital cameras. In these systems, multiple SMPS are required to provide well regulated voltage and power to various electronic components such as the central processing unit (CPU) and random-access memory (RAM). The combined volume, weight, and surface area footprint of these SMPS is usually the largest component.
Traditionally, SMPS volume reduction has been achieved through increased switching frequencies; however, for power-sensitive applications this is undesirable due to the increased switching losses. This thesis presents two alternative, power-efficient, SMPS miniaturization methods: one control and one topology based.
The presented controller recovers from load transients with virtually minimum possible output voltage deviation, reducing the reactive component size. The controller utilizes a simple algorithm, requiring no knowledge of the converter parameters and virtually no processing power. The simplicity of the control concept enabled the design of an area and power efficient integrated circuit (IC) implementation.
The entire IC is implemented in a CMOS 0.18µm process on a 0.26 mm2 silicon area, which is comparable to the state-of-the-art analog solutions. For the experimental system the deviation (output capacitor size) is about four times smaller than that of a fast PID compensator having a 1/10th of the switching frequency bandwidth.
The second solution is a complementary converter topology that has a smaller output filter volume, improved dynamic response, and lower switching losses compared to the state-of-the-art solutions. To reduce the volume and switching losses, the input-to-output voltage difference is decreased with a capacitive attenuator that replaces the input filter capacitor and has approximately the same volume. Both the attenuator and the downstream buck converter share the same set of switches, minimizing conduction losses. A single multi-mode digital controller governs operation of both stages, seamlessly regulating the output and input center-tap voltages. Experiments with a 5–1.5-V, 2.5-A, 1-MHz prototype show that, compared to the conventional buck, the merged topology has 43% smaller inductor, 36% smaller output capacitor, up to 30% lower power losses, and a 25% faster transient response.
|
49 |
Sistemas de conversão de energia multiníveis obtidos através da interconexão de módulos de conversores estáticos de potência de dois níveis.MAIA, Ayslan Caisson Norões. 27 August 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-08-27T19:35:43Z
No. of bitstreams: 1
AYSLAN CAISSON NORÕES MAIA – TESE (PPGEEI) 2016.pdf: 13981392 bytes, checksum: 9ea0aa715fdf8400283e71381b49a21b (MD5) / Made available in DSpace on 2018-08-27T19:35:43Z (GMT). No. of bitstreams: 1
AYSLAN CAISSON NORÕES MAIA – TESE (PPGEEI) 2016.pdf: 13981392 bytes, checksum: 9ea0aa715fdf8400283e71381b49a21b (MD5)
Previous issue date: 2016-02-22 / Nesse trabalho são apresentadas contribuições na área de identificação de sistemas representados em espaço de estados. É proposta uma metodologia completa para estimação de modelos que representem as principais dinâmicas de proessos industriais. O fluxo natural dos procedimentos de identificação consiste da coleta experimental dos dados, seguido pela esolha dos modelos candidatos e da utilização de um critério de ajuste que selecione o melhor modelo possível. Nesse sentido é proposta uma metodologia para estimativa de modelos em espaço de estados, utilizando excitações pulsadas. A abordagem desenvolvida combina algoritmos precisos e eficientes com experimentos rápidos, adequados a ambientes industriais. O projeto das excitações é realizado em tempo real, por meio de informações coletadas em um curto experimento inicial, baseado em uma única oscilação de uma estrutura realimentada por um relé. Esse mecanismo possibilita uma estimativa preliminar do atraso e da constante de tempo dominante do sistema. O método de identificação proposto é baseado na teoria de realizações de Kalman. É apresentada uma reformulação do problema de realizações clássico, para comportar sinais de entrada pulsados. Essa abordagem se mostra computacionalmente e cliente, assim como apresentar resultados semelhantes aos métodos de benchmark. A técnica possibilita também a estimativa de atrasos de transporte e a inserção de conhecimentos prévios por meio de um problema de otimização com restrições via LMI Linear Matrix Inequalities. Em muitos casos, somente as caraterísticas principais dos sistema são relevantes em um projeto de sistema de controle. Portanto é proposta uma técnica para obtenção de modelos de primeira ordem com atraso, a partir da redução de modelos balanceados em espaço de estados. Por fim, todas as contribuições discutidas nesse trabalho de teses não validadas em uma série de plantas experimentais em salas de laboratório. Plantas essas, projetadas e construídas com o intuito de emular o cotidiano operacional de instalações industriais reais. / Static converters are a widely used equipment in power systems to control the electrical
energy low between sources and loads. In this context, it is observed a demand for converters topologies that generate high quality waveforms and are capable of supplying loads with ever larger powers. In high power applications such as industrial and power systems, the development of a special class of converters topologies, denominated multilevel converters, has been widely recognized as a viable solution to overcome the operational limits of semiconductor devices. In this work are developed and analyzed multilevel structures of type DC-AC applied to the six-phase machines drives and of type AC-DC-AC feeding singlephase and three-phase loads. These topologies are obtained by interconnecting two-level converters modules in order to optimize the system: reduction of losses in the semiconductor devices, harmonic distortion of the signals and ratings of voltage and/or current in the power switches. For this investigation were performed steady state analyzes, where the operatinglimits of the structures to the imposed control conditions and the behavior of the fundamental component of voltage and current are evaluated. In addition, for each investigated topology, were developed: dynamic models, PWM techniques, control strategies, simulation results and experimental results. The impact of this optimization is quanti ed by calculating the THD and WTHD of the current and voltage signals generated by the converter and by estimating losses in the semiconductor devices. Finally, a comparative study is done using conventional converters as reference in order to evaluate the performance of the proposed
topologies
|
50 |
Desenvolvimento de conversor comutado em baixa frequencia para aplicação em sistemas de geração distribuida baseados em celulas a combustivel / Development of a low-frequency commutation converter for distributed generation system based on fuel cellsMartins, Geomar Machado 14 July 2006 (has links)
Orientador: Jose Antenor Pomilio / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-07T10:48:39Z (GMT). No. of bitstreams: 1
Martins_GeomarMachado_D.pdf: 4129472 bytes, checksum: 7290e97be14c6528a200531ef75ad6b8 (MD5)
Previous issue date: 2006 / Resumo: A conexão de fontes de geração distribuída com' a rede geralmente necessita de um conversor eletrônico para processar a energia gerada localmente e injetá-la na rede. Este trabalho apresenta um sistema de geração distribuída para baixas potências, composto por uma fonte primária em CC, como uma Célula a Combustível. Um conversor elevador boost conecta a fonte primária a um inversor trifásico comutado em baixa freqüência que injeta a energia na rede e garante a sua qualidade. Um circuito auxiliar é agregado à topologia do inversor com a finalidade de reduzir a distorção de sua tensão de saída, dessa forma melhorando a forma de onda da corrente. A estratégia de controle empregada permite um desempenho seguro mesmo com as flutuações na energia gerada. As principais vantagens desta proposta são a minimização das perdas de chaveamento (ou seja, alto rendimento) e a eliminação de IEM (o que evita o uso de filtros de altas freqüências comuns nos conversores chaveados em alta freqüência). Os procedimentos de projeto são estabelecidos com vistas à redução do volume dos elementos empregados no circuito, buscando uma densidade de potência mais alta. Um protótipo de 1300 V A é implementado e testado. Os resultados obtidos confirmam a análise teórica / Abstract: The connection of distributed power sources with the utility grid generally needs an electronic power converter for processing the locally generated power and injecting current into the system. This work presents a system intended to low-power distributed generation composed by a DC primary source, as a fuel cell. A boost converter connects the supply to an inverter, composed by a three-phase one using low-frequency commutation, which injects the power into the grid and guarantees the AC power quality. An auxiliary circuit is added to the inverter topology in order to reduce the output voltage distortion, thus improving the current waveform. The employed control strategy allows a secure performance even if there are fluctuations in the generated power. The main advantages of this approach are the minimization of the switching losses (i.e. high efficiency) and the elimination of the EMI (which avoids high-frequency filters necessary in high-frequency commutation inverters). Design procedures are established permiting to reduce the volume of the elements, seeking a high power density. A 1300 V A converter prototype is implemented and tested. The obtained results confirm the theoretical analysis / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica
|
Page generated in 0.1029 seconds