• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative microstructural characterization of microalloyed steels

Lu, Junfang 11 1900 (has links)
Microalloyed steels are widely used in oil and gas pipelines. They are a class of high strength, low carbon steels containing small additions (in amounts less than 0.1 wt%) of Nb, Ti and/or V. The steels may contain other alloying elements, such as Mo, in amounts exceeding 0.1wt%. Microalloyed steels have good strength, good toughness and excellent weldability, which are attributed in part to the presence of precipitates, especially nano-precipitates with sizes less than 10nm. Nano-precipitates have an important strengthening contribution, i.e. precipitation strengthening. In order to fully understand steel strengthening mechanisms, it is necessary to determine the precipitation strengthening contribution. Because of the fine sizes and low volume fraction, conventional microscopic methods are not satisfactory for quantifying the nano-precipitates. Matrix dissolution is a promising alternative to extract the precipitates for quantification. Relatively large volumes of material can be analyzed, so that statistically significant quantities of precipitates of different sizes are collected. In this thesis, the microstructure features of a series of microalloyed steels are characterized using optical microscopy (OM) and scanning electron microscopy (SEM). Matrix dissolution techniques have been developed to extract the precipitates from the above microalloyed steels. Transmission electron microscopy (TEM) and x-ray diffraction (XRD) are combined to analyze the chemical speciation of these precipitates. Rietveld refinement of the XRD pattern is used to fully quantify the relative amounts of the precipitates. The size distribution of the nano-precipitates (mostly 10 nm) is quantified using dark field imaging (DF) in the TEM. The effects of steel chemistry and processing parameters on grain microstructure and the amount of nano-precipitates are discussed. Individual strengthening contributions due to grain size effect, solid solution strengthening and precipitation strengthening are quantified to fully understand the strengthening mechanisms of the steels. / Materials Engineering
2

Quantitative microstructural characterization of microalloyed steels

Lu, Junfang Unknown Date
No description available.
3

Phase-field simulations of the precipitation kinetics and microstructure development in nickel-based superalloys

Yenusah, Caleb O 13 May 2022 (has links)
The continual research and development of nickel-based superalloys is driven by the global demand to improve efficiency and reduce emissions in the aerospace and power generation industries. Integrated Computational Material Engineering (ICME) is a valuable tool for reducing the cost, time, and resources necessary for the development and optimization of the mechanical properties of materials. In this work, an ICME approach for understanding the microstructure development and optimizing the mechanical properties in nickel-based superalloys is employed. Most nickel-based superalloys are precipitate strengthened by either the γ’ phase, γ” phase, or both. Therefore, understanding the precipitation kinetics and morphological evolution of these phases is critical for evaluating their hardening effects during heat treatment and degradation of the microstructure during high temperature service. To this end, a phase-field model has been developed to analyze the nucleation, growth and coarsening kinetics during isothermal and non-isothermal aging conditions. Utilizing the phase-field model, the γ” phase microstructure development and its coherency strengthening effect in Inconel 625 is studied. A novel multistage aging strategy to optimize the γ” phase strengthening effect and reduce aging times for Inconel 625 is proposed. Secondly, the coarsening kinetic and microstructure development of γ’ strengthening phase in nickel-based superalloys is studied, with the goal of understanding the effect of elastic inhomogeneity on the microstructure evolution at high volume fractions of the γ’ phase. The result shows deviation of the coarsening kinetics from the classical Lifshitz-Slyozov-Wagner (LSW) due to the effect of elastic inhomogeneity, highlighting the need for incorporating elastic energy into coarsening theories.
4

Development of Fe-based Superalloys Strengthened by the γ'Phase / γ'相で強化したFe基超合金の開発

Ahmad, Afandi 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22777号 / 工博第4776号 / 新制||工||1747(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 乾 晴行, 教授 安田 秀幸, 教授 辻 伸泰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
5

Synergistic Effects of Lattice Instability and Chemical Ordering on FCC Based Complex Concentrated Alloys

Dasari, Sriswaroop 08 1900 (has links)
The current work investigates how the interactions among constituent elements in high entropy alloys or complex concentrated alloys (HEA/CCAs) can lead to lattice instability and local chemical ordering which in turn affects the microstructure and properties of these alloys. Using binary enthalpies of mixing, the degree of ordering in concentrated multi-component solid solutions was successfully tailored by introducing Cr, Al and Ti in a CoFeNi HEA/CCA. CoFeNi was selected as the base alloy to achieve a close to random solid solution as indicated by the near-zero binary enthalpies in CoFeNi alloy system. The room temperature tensile properties of these alloys with varied degree of ordering follow a consistent trend where yield stress increased with degree of ordering. This novel approach provides a new alloy design strategy to obtain controlled ordering tendencies and consequently targeted mechanical properties. Further studies on specific alloys have been conducted to utilize this ordering tendency in attaining precipitation strengthening. For this purpose, Al, Ti and Ni were selected to promote ordering and Co, Fe, and Cr were chosen to strengthen the solid solution matrix. In Al0.25CoFeNi HEA/CCA, the ordering tendency between Al and Ni results in a competition between two long-range ordered phases, L12 and B2. While homogenous L12 precipitation takes place at an annealing temperature of 500oC, heterogeneous B2 precipitation occurs at 700oC. At 600oC, this competition between L12 and B2 phases results in a novel nano-lamellar microstructure. The alternating lamellae are mainly FCC and BCC based whose morphology is similar to pearlite in steels. However, the FCC lamella is made up of FCC and L12 phases and the BCC lamella is made up of BCC and B2 phases. A different thermomechanical processing route can be used to obtain the same phase composition but distributed in a nano-grained fashion. This nano-grained microstructure exhibits the best strength-ductility combination in this alloy. Thermomechanical processing can also be used to engineer the transformation pathway of L12 from homogenous to discontinuous precipitation. The homogenous and discontinuous L12 precipitation has been investigated in two different alloys namely, Al0.2Ti0.3Co1.5CrFeNi1.5 and Al0.3Ti0.2Co0.7CrFeNi1.7. While discontinuous precipitation (DP) is generally considered deleterious to mechanical properties, the results from this study suggests that microstructures with DP perform better compared to homogenous L12 up to 500oC. However, beyond 500oC, microstructures with homogenous L12 appears to perform better than discontinuously precipitated FCC+L12 microstructure.
6

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Hwang, Junyeon 05 1900 (has links)
Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the low-Si 319 type aluminum alloys are also presented with sample preparation and analysis condition of TEM and 3DAP tomography.
7

Estudio de la microestructura y las propiedades mecánicas de nuevos aceros diseñados para aplicaciones en centrales térmicas de alta eficiencia y baja emisión de CO2

Benavente Martínez, Esther 03 September 2014 (has links)
La mejora de la eficiencia de las centrales térmicas mediante el aumento de la temperatura y la presión de trabajo permite reducir el consumo de combustibles fósiles y las emisiones de CO2 , pero requiere el desarrollo de nuevos materiales capaces de soportar estas condiciones más extremas. En el presente trabajo se han estudiado nuevos aceros que podrían ser utilizados para la fabricación de componentes en centrales térmicas de alta eficiencia y baja emisión de CO2 . Se han clasificado en dos grupos, Grupo I: Aceros con 14 % Cr diseñados para aplicaciones hasta 650 ºC y Grupo II: Aceros con 2,25% Cr diseñados para aplicaciones hasta 600 ºC. Las distintas aleaciones fueron obtenidas por colada y laminadas a 900 ºC. Posteriormente se sometieron a un tratamiento térmico de solubilización y revenido para la obtención de una microestructura de martensita revenida reforzada con partículas de segunda fase, finas y homogéneamente distribuidas. La caracterización mecánica se realizó entre 540 y 650 ºC mediante ensayos de compresión con cambios en la velocidad de deformación y ensayos de fluencia. Para la identificación de las fases presentes y el análisis de los cambios microestructurales que se producen durante el tiempo de permanencia a alta temperatura, las aleaciones fueron estudiadas tanto antes como después de los ensayos mecánicos, mediante difracción de rayos X, dureza Vickers, microscopía óptica y electrónica de barrido y transmisión (SEM y TEM) y difracción de electrones retrodispersados (EBSD). Se detectó un cambio de comportamiento entre las regiones de alta y baja tensión y una pérdida de resistencia asociada a la degradación microestructural sufrida durante el tiempo de permanencia a elevada temperatura. A pesar de esto, algunas aleaciones alcanzan tensiones de rotura cercanas a los 100 MPa a 100.000 horas, debido a la gran interacción existente entre las dislocaciones y las partículas de refuerzo. / Benavente Martínez, E. (2014). Estudio de la microestructura y las propiedades mecánicas de nuevos aceros diseñados para aplicaciones en centrales térmicas de alta eficiencia y baja emisión de CO2 [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39349 / TESIS

Page generated in 0.1433 seconds