11 |
Sistema de Controle de uma Incubadora Neonatal Segundo a Norma NBR IEC 60601219 Aspectos de AvaliaÃÃo, IdentificaÃÃo DinÃmica e Novas Propostas / Control System of a Neonatal Incubator According to NBR IEC 60.601-2/19: Aspects of Assessment, Identifying Dynamic and New Proposals.Alberto Alexandre Moura de Albuquerque 17 September 2012 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Neste trabalho foi construido um sistema de hardware e software acoplado em uma incubadora comercial transformando-a em uma plataforma de estudo sobre o processo de umidade e temperatura caracteristico deste sistema. Atraves do software em um computador e possivel fazer medicoes das variaveis controladas e modificar os valores das variÃveis manipuladas, neste caso, o resistor de aquecimento do ar, no sistema de temperatura, e o resistor de aquecimento da agua no sistema de umidade. Foram identificados modelos do processo e um controlador preditivo do tipo GPC foi projetado para atender os criterios definidos na norma NBR IEC 60601-2/19. Para verificar o cumprimento destes critÃrios pelo controlador foi construido um sistema de hardware e software para realizar alguns dos ensaios previstos pela norma, criando um sistema de avaliacao de desempenho
do comportamento das grandezas de temperatura e umidade relativa do ar no interior de incubadoras neonatais conforme a norma. O desempenho do controlador projetado foi
comparado com o controlador pre existente da incubadora comercial. Foi verificado que o controlador projetado conseguiu atender os critÃrios da norma com sobre-sinal e erro de regime menores que os obtidos pelo controlador ja pre-existente na incubadora comercial. / In this work was built a system of hardware and software engaged in a commercial incubator turning it into a platform to study the process of humidity and temperature characteristic of this system. Using the software on a computer can make measurements of controlled variables and modify the values of the manipulated variables, in this case
the resistor heating the air in the temperatureâs system and the heating resistor of the water in the humidityâs system. Process models were identified and a predictive controller
type GPC is designed to meet the criteria defined in the standard NBR IEC 60601-2/19.
To verify compliance with the criteria by the controller was built a system of hardware and software to perform some of the tests required by the standard. The performance of
the controller was designed compared to the controller pre-existing commercial incubator.
It was verified that the controller designed could meet the criteria of the standard more efficiently than the already pre existing business in the incubator.
|
12 |
Controle preditivo retroalimentado por estados estimados, aplicado a uma planta laboratorialPaim, Anderson de Campos January 2009 (has links)
A retroalimentação de controladores preditivos que utilizam modelos em espaço de estado pode ser realizada de duas formas: (a) correção por bias, em que as saídas preditas são corrigidas adicionando-se um valor proporcional a discrepância encontrada entre o valor medido atual e sua respectiva predição e por (b) retroalimentação dos estados, onde se determinam as condições iniciais através da estimação dos estados, e a partir de uma melhor condição inicial se realizam as predições futuras usadas no cálculo das ações de controle. Nesta dissertação estas duas abordagens são comparadas utilizando a Planta Laboratorial de Seis Tanques Esféricos. As técnicas de Filtro de Kalman Estendido (EKF) e Filtro de Kalman Estendido com Restrições (CEKF) foram empregadas para estimar os estados não medidos. Inicialmente foram feitos testes off-line destes algoritmos de estimação. Para estes testes são utilizados uma série de dados da planta laboratorial do estudo de caso, na qual são estudadas as influências de diversos fatores de ajuste que determinam a qualidade final de estimação. Estes ajustes serviram de base para a aplicação destes algoritmos em tempo real, quando então, estimadores de estados estão associados ao sistema de controle do processo baseado em um algoritmo de controle preditivo. Após se ter certificado a qualidade das estimações de estado, partiu-se para sua utilização como uma alternativa de retroalimentação de controladores preditivos. Estes resultados foram comparados com os obtidos através da correção simples por bias. Os resultados experimentais apontam para uma marginal piora devido à retroalimentação por estimadores de estados frente à correção por bias, pelo menos para o caso do controlador preditivo linear utilizado na comparação. Entretanto, espera-se que resultados melhores sejam obtidos no caso de modelos preditivos não-lineares, uma vez que nestes casos o modelo é bem mais sensível à qualidade da condição inicial. / The feedback of controllers that use predictive models in state space can be accomplished in two ways: (a) bias correction, where the predicted outputs are corrected by adding a value proportional to the discrepancy found between the current measurement and its respective prediction; and by (b) state feedback, which establishes the initial conditions through the states estimation, and from a better initial condition are carried out the future predictions used in the calculation of control. In this thesis these two approaches are compared using a Laboratorial Plant of Six Spherical Tanks. The techniques of Extended Kalman Filter (EKF) and Constraint Extended Kalman Filter (CEKF) were used to estimate the unmeasured states. Initially, tests were carried out off-line for theses estimation algorithms. For such testing are used a dataset of the plant in case study, in which are studied the influences of several adjustment factors that they determine the final quality of estimation. These adjustments were used of base for the application of these algorithms in real time, when then state estimators are associated with the system of process control based on a predictive control algorithm. After having ascertained the quality of the state estimates, begins its use as an alternative for feedback of predictive controllers. These results were compared with those obtained by the simple correction of bias. The experimental results show a marginal worsening due to feedback from state estimated compared with bias correction, at least for the case of linear predictive controller used in the comparison. However, one expects that better results will be obtained in the case of non-linear predictive models, since in these cases the model is much more sensitive to the quality of the initial condition.
|
13 |
An embedded model predictive controller for optimal truck drivingMancino, Francesco January 2017 (has links)
An embedded model predictive controller for velocity control of trucks is developed and tested. By using a simple model of a heavy duty vehicle and knowledge about the slope of the road ahead, the fuel consumption while traveling near a set speed is diminished by almost 1% on an example road compared to a rule based speed control system. The problem is formulated as a look-ahead optimization problem were fuel consumption and total trip time have to be minimized. To find the optimal solution dynamic programming is used, and the whole code is designed to run on a Scania gearbox ECU in parallel with all the current software. Simulations were executed in a Simulink environment, and two test rides were performed on the E4 motorway. / En algoritm för hastighetsstyrning baserad på modell-prediktiv reglering har utvecklats och testats på befintlig styrsystem i ett Scania lastbil. Genom att använda en enkel modell av fordonet och kunskap om lutningen på vägen framför den kunde man sänka bränsleförbrukningen med nästan 1% i vissa sträckor, jämfört med en regelbaserad farthållare. Problemet är formulerat som en optimerings-problem där bränsleförbrukning och total restid måste minimeras. För att hitta den optimala lösningen användes dynamisk programmering och hela koden är skriven så att den kan exekveras på en Scania styrenehet. Koden är kan köras parallellt med den mjukvara som är installerad på styrenheten. Simuleringar utfördes i en miljö utvecklad i Simulink. Två test-körningar på E4 motorvägen utfördes.
|
14 |
Controle preditivo robusto com realimentação de saída. / Robust MPC with output feedback.Perez, José Manuel Gonzalez Tubio 17 March 2006 (has links)
Esse trabalho apresenta uma contribuição para o projeto de um controlador MPC robusto quanto à estabilidade baseado na realimentação da saída e admitindo restrições nas entradas e incertezas no modelo da planta. Ele estende a abordagem existente para o projeto de um MPC considerando o caso particular de um modelo em espaço de estados, onde o estado é lido diretamente da planta, sendo aplicado para a situação em que o sistema escolhido de entradas possa ficar saturado ou que o processo seja representado por um modelo diferente do modelo considerado na função objetivo do controlador. Para isso, o MPC se propõe a resolver o problema de otimização em dois estágios: No estágio off-line, vários controladores sem restrição são obtidos a partir de um problema de otimização onde inequações de Lyapunov são acrescentadas ao problema como restrições de forma a garantir a contração do estado (estabilidade). Esses controladores, representados por uma matriz de ganhos, correspondem a todas configurações possíveis de saturação das variáveis manipuladas para um dado conjunto possível de variáveis controladas. Nessas combinações, incluídas como restrições no controlador, todos os modelos previstos para o processo são considerados. Dessa forma, perdendo-se uma entrada, o subconjunto de saídas controladas pode ser alterado.Na versão anterior do método proposto por Rodrigues & Odloak (2005), esse estágio off-line envolve um observador de estados o que dificulta a solução do problema de otimização do MPC robusto, consumindo grande tempo computacional. Além disso, requer uma solução inicial viável que nem sempre é trivial. Com a versão proposta do sistema de modelo espaço estado, o estimador de estado torna-se desnecessário pois o estado passa a ser medido. Na etapa on-line do projeto do controlador, uma lei ótima de controle é obtida a partir da combinação convexa das configurações de controle que correspondem ao conjunto de variáveis manipuladas disponíveis (não saturadas). Também nessa etapa é considerada a incerteza do modelo utilizado pelo controlador. O controlador proposto é testado com alguns exemplos simulados a partir de modelos obtidos na indústria de processo. / In this work, it is presented a contribution to the design of a robust MPC with output feedback, input constraints and uncertain model. This work extends existing approaches by considering a particular non-minimal state space model, which transforms the output feedback strategy into a state feedback strategy. The controller is developed to the case in which the system inputs may become saturated and the model is uncertain. We follow a two stages approach: In the off-line stage, a series of unconstrained robust MPCs is obtained by including in the control optimization problem, inequality constraints that force the state of the closed-loop system to contract along the time. Each of these controllers, represented by a gain matrix, is associated to particular sets of manipulated inputs and controlled outputs. When one manipulated input becomes saturated, we may need to reduce the set of controlled variables. In the existing version of the method, the closed loop system involves a state observer that makes the solution to the robust MPC optimization problem a time consuming step. The problem also requires an initial solution that may not be trivial to find. With the adopted version of the system state space model, the state filter becomes trivial and the state can be considered measured. In the on-line step of the proposed controller design, a sub optimal control law is obtained by combining control configurations that correspond to particular subsets of available manipulated inputs. The method is illustrated with simulation examples of the process industry.
|
15 |
Controle preditivo multi-rate para eficiência energética em sistema de controle via rede sem fio / Multi-rate predictive control for energy efficiency in wireless networked control systemFakir, Felipe [UNESP] 01 June 2017 (has links)
Submitted by Felipe Fakir null (zafakir@yahoo.com.br) on 2017-06-27T07:01:28Z
No. of bitstreams: 1
FFAKIR Dissertação vFinalFichaCataAta.pdf: 2064786 bytes, checksum: 158a935a636b9dbf9e59618a35b4c8ef (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-06-28T19:39:58Z (GMT) No. of bitstreams: 1
fakir_f_me_bauru.pdf: 2064786 bytes, checksum: 158a935a636b9dbf9e59618a35b4c8ef (MD5) / Made available in DSpace on 2017-06-28T19:39:58Z (GMT). No. of bitstreams: 1
fakir_f_me_bauru.pdf: 2064786 bytes, checksum: 158a935a636b9dbf9e59618a35b4c8ef (MD5)
Previous issue date: 2017-06-01 / A tecnologia de comunicação wireless vem se tornando parte fundamental do cotidiano das indústrias de processos, onde o uso de transmissores wireless aplicados à monitoração e controle já é uma realidade. A arquitetura de Sistema de Controle via Rede Sem Fio (WNCS) possui vantagens em relação às arquiteturas tradicionais ponto-a-ponto e às arquiteturas de redes cabeadas devido à facilidade de instalação, configuração e manutenção. No entanto, a evolução desta tecnologia introduziu novos desafios para a implementação da malha de controle fechada por um instrumento wireless como as não linearidades, perda de pacote de dados e restrições da comunicação de dados nas redes sem fio. Outro fator crítico relacionado à implementação de WNCSs é a fonte de energia limitada destes transmissores, que possuem vida útil dependente da quantidade de acessos e dados transmitidos. Este trabalho apresenta o estudo e o desenvolvimento de um controlador preditivo multi-rate como alternativa para melhorar a eficiência energética em aplicações industriais de WNCSs. A estratégia proposta não necessita receber constantemente os valores reais das variáveis do processo transmitidos pelos transmissores wireless, pois o controlador preditivo baseado em modelo (MPC) se utiliza do submodelo interno das variáveis de processo para estimar os valores das variáveis quando estas não são transmitidas. Dessa forma, uma diminuição da frequência de transmissão de dados na rede sem fio pode ser obtida e, consequentemente uma redução do consumo energético dos dispositivos sem fio. Resultados de simulações em diferentes condições de operação de um WNCS multivariável de controle de tanques acoplados demonstram que o MPC multi-rate possui características de robustez e é efetivo para aplicações de WNCS, garantindo requisitos de controle e estabilidade mesmo com a diminuição da frequência de transmissão de dados de realimentação na rede sem fio. Adicionalmente, resultados do consumo energético dos dispositivos do WNCS mostraram que o MPC multi-rate proporciona uma economia de energia de até 20% das baterias dos transmissores wireless. Uma análise da eficiência energética do WNCS é apresentada através do estudo dos limites operacionais do controlador MPC multi-rate considerando a relação de compromisso entre o período de amostragem dos dispositivos sem fio e o desempenho de controle do WNCS. / Wireless communication technology has become a fundamental part of the everyday life of process industries, where the use of wireless transmitters for monitoring and control is already a reality. The architecture of Wireless Networked Control Systems (WNCSs) has advantages over point-to-point and wired networks architectures due to the ease of installation, configuration and maintenance. However, the evolution of this technology has introduced new challenges to the implementation of the closed loop control with a wireless instrument as nonlinearities, packet losses and data communication constraints in the wireless networks. Another critical factor related to implementation of WNCSs is the energy source of these transmitters, which have limited lifetime dependent on the amount of access and data transmitted. This work presents the study and the development of a multi-rate predictive controller as an alternative to improve energy efficiency in industrial applications of WNCSs. The proposed strategy does not need to frequently receive updated process variables transmitted by wireless transmitters, because the model predictive controller (MPC) uses the internal submodel of the process variables to estimate the variables values when they are not transmitted. Thus, a decrease in the frequency of data transmission on the wireless network can be obtained and consequently a reduction of energy consumption of wireless devices. Simulation results for different operating conditions of a multivariable WNCS of coupled tanks shows that the multi-rate MPC provides robustness and it is effective for WNCS applications, ensuring control and stability requirements even with the reduction of the transmission frequency of the feedback data in the wireless network. In addition, energy consumption results from the WNCS devices showed that MPC multi-rate provides 20% of energy economy as it is effective in saving the energy expenditure of the wireless transmitter’s battery. An energy efficiency analysis of the WNCS is presented by studying the operating limits of the multi-rate MPC controller considering the compromise relationship between the sampling period of the wireless devices and the control performance of the WNCS.
|
16 |
Controle preditivo n?o linear baseado no modelo de Hammerstein com prova de estabilidadeCasillo, Danielle Simone da Silva 27 March 2009 (has links)
Made available in DSpace on 2014-12-17T14:54:52Z (GMT). No. of bitstreams: 1
DanielleSSC.pdf: 1582089 bytes, checksum: 60ca15361e82c560b730f3d2c8f4b062 (MD5)
Previous issue date: 2009-03-27 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The Predictive Controller has been receiving plenty attention in the last decades, because the need to understand, to analyze, to predict and to control real systems has been quickly growing with the technological and industrial progress. The objective of this thesis is to present a contribution for the development and implementation of Nonlinear Predictive Controllers based on Hammerstein model, as well as to its make properties evaluation. In this case, in the Nonlinear Predictive Controller development the time-step linearization method is used and a compensation term is introduced in order to improve the controller performance. The main motivation of this thesis is the study and stability guarantee for the Nonlinear Predictive Controller based on Hammerstein model. In this case, was used the concepts of sections and Popov Theorem. Simulation results with literature models shows that the proposed approaches are able to control with good performance and to guarantee the systems stability / O Controle Preditivo tem recebido muita aten??o nas ?ltimas d?cadas, visto que a necessidade de compreender, analisar, predizer e controlar sistemas reais tem crescido rapidamente com o avan?o tecnol?gico e industrial. O objetivo desta tese ? apresentar uma contribui??o para o desenvolvimento e implementa??o de Controladores Preditivos N?o lineares baseado no modelo de Hammerstein, bem como fazer uma avalia??o de suas propriedades. Neste caso, no desenvolvimento do Controlador Preditivo N?o Linear utiliza-se o m?todo de lineariza??o por degrau de tempo e ? introduzido um termo de compensa??o a fim de melhorar o desempenho do mesmo. A principal motiva??o desta tese ? o estudo e a prova da estabilidade para o Controlador Preditivo N?o Linear baseado no modelo de Hammerstein. Para isso utilizou-se os conceitos de setores e Crit?rio de Popov. Testes de simula??o com modelos da literatura mostram que as abordagens propostas s?o capazes de controlar com um bom desempenho e garantir a estabilidade dos sistemas
|
17 |
Controle preditivo robusto com realimentação de saída. / Robust MPC with output feedback.José Manuel Gonzalez Tubio Perez 17 March 2006 (has links)
Esse trabalho apresenta uma contribuição para o projeto de um controlador MPC robusto quanto à estabilidade baseado na realimentação da saída e admitindo restrições nas entradas e incertezas no modelo da planta. Ele estende a abordagem existente para o projeto de um MPC considerando o caso particular de um modelo em espaço de estados, onde o estado é lido diretamente da planta, sendo aplicado para a situação em que o sistema escolhido de entradas possa ficar saturado ou que o processo seja representado por um modelo diferente do modelo considerado na função objetivo do controlador. Para isso, o MPC se propõe a resolver o problema de otimização em dois estágios: No estágio off-line, vários controladores sem restrição são obtidos a partir de um problema de otimização onde inequações de Lyapunov são acrescentadas ao problema como restrições de forma a garantir a contração do estado (estabilidade). Esses controladores, representados por uma matriz de ganhos, correspondem a todas configurações possíveis de saturação das variáveis manipuladas para um dado conjunto possível de variáveis controladas. Nessas combinações, incluídas como restrições no controlador, todos os modelos previstos para o processo são considerados. Dessa forma, perdendo-se uma entrada, o subconjunto de saídas controladas pode ser alterado.Na versão anterior do método proposto por Rodrigues & Odloak (2005), esse estágio off-line envolve um observador de estados o que dificulta a solução do problema de otimização do MPC robusto, consumindo grande tempo computacional. Além disso, requer uma solução inicial viável que nem sempre é trivial. Com a versão proposta do sistema de modelo espaço estado, o estimador de estado torna-se desnecessário pois o estado passa a ser medido. Na etapa on-line do projeto do controlador, uma lei ótima de controle é obtida a partir da combinação convexa das configurações de controle que correspondem ao conjunto de variáveis manipuladas disponíveis (não saturadas). Também nessa etapa é considerada a incerteza do modelo utilizado pelo controlador. O controlador proposto é testado com alguns exemplos simulados a partir de modelos obtidos na indústria de processo. / In this work, it is presented a contribution to the design of a robust MPC with output feedback, input constraints and uncertain model. This work extends existing approaches by considering a particular non-minimal state space model, which transforms the output feedback strategy into a state feedback strategy. The controller is developed to the case in which the system inputs may become saturated and the model is uncertain. We follow a two stages approach: In the off-line stage, a series of unconstrained robust MPCs is obtained by including in the control optimization problem, inequality constraints that force the state of the closed-loop system to contract along the time. Each of these controllers, represented by a gain matrix, is associated to particular sets of manipulated inputs and controlled outputs. When one manipulated input becomes saturated, we may need to reduce the set of controlled variables. In the existing version of the method, the closed loop system involves a state observer that makes the solution to the robust MPC optimization problem a time consuming step. The problem also requires an initial solution that may not be trivial to find. With the adopted version of the system state space model, the state filter becomes trivial and the state can be considered measured. In the on-line step of the proposed controller design, a sub optimal control law is obtained by combining control configurations that correspond to particular subsets of available manipulated inputs. The method is illustrated with simulation examples of the process industry.
|
18 |
THERMAL ENERGY STORAGE INTEGRATED GROUND SOURCE HEAT PUMP SYSTEM FOR DE-CARBONIZATIONLiang Shi (13269246) 30 April 2023 (has links)
<p>To reduce greenhouse gas emissions, shifting the energy sources used in buildings, transportation, industry, etc., from fossil fuels to clean electricity is a trend. The increasing electricity demand stresses the existing electric grids. Buildings consume 73% of all U.S. electricity and are responsible for 30% of U.S. greenhouse gas emissions. Residential and commercial buildings' space heating/cooling system consumes considerable electricity. Integrating thermal energy storage (TES) in building heating/cooling systems can mitigate the challenge of electric grids. Applying TES to existing air-source heat pump (ASHP) systems is the most studied for residential buildings. However, the high-quality thermal energy requirement for charging the TES tank results in low thermal performance of the ASHP system. Moreover, the failure of ASHP in cold climates requires a supplemental electric heater that significantly reduces the system efficiency and may lead to a higher annual peak for the grids.</p>
<p>This study proposes integrating TES with ground-source heat pump (GSHP) systems as a more effective solution for building decarbonization due to the high efficiency of renewable-energy-based GSHPs year-round. This study focuses on proving the effectiveness of TES-integrated GSHPs for building decarbonization. A dual-source heat pump (DSHP) with a hybrid TES and ground heat exchanger (GHE) named dual-purpose underground thermal battery (DPUTB) is investigated. The study uses modeling and experiments to verify the system's energy efficiency, decarbonization potential, and demand response capability. The modeling process involves developing various models, from component-level to system-level, and investigating advanced control strategies. A first-of-this-kind dynamic model of the DPUTB is developed to enable high-resolution system simulation for the GSHP system. The simulation is conducted using Modelica with rule-based control (RBC). A model predictive control (MPC) is also developed based on dynamic building envelope and heating, ventilation, and air conditioning (HVAC) system models. A cutting-edge co-simulation testbed integrates Modelica physical models with a MATLAB MPC controller model for advanced control evaluation. A prototype system of the DPUTB+DSHP is tested in a flexible research platform (FRP) at Oak Ridge National Laboratory (ORNL), which allows for component and system-level testing and remote automation controls. </p>
<p>The study highlights the importance of proper insulation in the performance of the DPUTB, which consists of a TES tank enclosed by an outer tank functioning as a GHE. With appropriate insulation, a full-size DPUTB can store 1-ton cooling (3.5 kW) for four hours after eight hours of charging. Simulation results suggest that decoupling the TES with the GHE could reduce energy consumption by 27%. System-level simulations confirm that the DSHP+DPUTB system, with a customized RBC, outperforms the conventional ASHP. The proposed system can reduce the annual HVAC electricity cost by up to 50% while saving 45% on electricity consumption. In the Northern areas of the United States, the annual peak load of the HVAC system can be reduced by 60%. However, this reduction is less in the Southern parts of the as the system's higher efficiency in winter dominates the overall decrease. The application of MPC can further reduce the cost and energy consumption of the system by 35% theoretically. However, the accuracy of model prediction affects its performance in practical applications, which can be mitigated by employing technologies such as machine learning and reinforcement learning. Further research is required to verify these technologies.</p>
<p>The DSHP+DPUTB system, a type of TES-integrated GSHP, has been well-designed and demonstrated superior performance to conventional systems, with greater flexibility and thermal efficiency. As a result, this system can enable electrification in the space heating sector without requiring an escalation in the grid. Moreover, alternative controls can be utilized to exploit its decarbonization potential fully.</p>
|
19 |
Evaluation of an Economic Model Predictive Controller on a Double-heater SystemThomas, Daniel January 2024 (has links)
Temperature control is a widely researched topic and a common application is in heating systems such as buildings. A temperature control method that is central in ensuring comfort and reduction of energy consumption in modern buildings and other heating systems is based on model predictive control (MPC). Traditionally, the MPC optimal control problem is to track a target, but there are other examples of optimization problems besides tracking problems and one such optimization problem is the economical optimization problem, an optimization based on economical objectives. A heating system with electrical supply may be controlled by an economic MPC such that the economical objective is to consider time-varying prices of electricity. This thesis studies how time-varying prices of electricity can be utilized as an economical objective in an economical MPC to reduce electricity costs for a double-heater system. This is done using an available model of the double-heater system and an MPC to construct an economical MPC. The performance of the economical MPC is then investigated and compared to the existing MPC. In the thesis it is found, through a test with six different cost profiles and a test with historical data of forecasts of electricity prices, that the economical MPC can reduce total electricity costs when compared to the existing MPC. Furthermore it is found that the performance of the economic MPC is acceptable when it is compared with and without prediction of setpoint changes, prediction of price changes and an isolating layer between the heaters. The thesis concludes that satisfactory results are attained, as the economical MPC leads to decreased total electricity costs for the double-heater system and notes that the economic MPC is versatile by accepting both user-defined and historical cost profiles.
|
20 |
Comparison of control strategies for manipulating a Hydrobatic Autonomous Underwater Vehicle / Jämförelse av kontrollstrategier för att manipulera ett hydrobatiskt autonomt undervattensfordonPanteli, Chariklia January 2021 (has links)
This master thesis project is focused on the development of an LQR controller and its comparison with other controllers (PID and MPC), in order to successfully control an Autonomous Underwater Vehicle manipulation system. The modelling of the manipulator was performed first in Matlab and later on in Simulink-Simscape. Once the manipulator was integrated with the AUV model, the LQR controller was also developed initially in Matlab and then in Simulink. The controller was then extracted from Simulink as a C-code and verified in Stonefish. After confirming that the LQR code was working in Stonefish, its results from Simulink were compared with PID and MPC results for two different trajectories. The data for comparison and statistical analysis were divided into the two trajectory scenarios (horizontal and vertical) since the weight matrices of both controllers were different. Looking at the system’s overall behavior the Model Predictive Control (MPC) and LQR had similar results, regarding the rise time, overshoot, steady-state error and robustness to disturbances. An anticipated fact for the MPC was that it takes the longest run time for both scenarios. Lastly, as expected the PID had the worst response of all three controllers, in both scenarios. Implementing a PID on a nonlinear system, produced many oscillations without being able to stabilize at the reference value, thus giving a large steady-state error. In addition, it could not counteract the noise disturbances in the signal. / Detta examensarbete är inriktat på utvecklingen av en LQR-styrenhet och dess jämförelse med andra kontroller (PID och MPC), för att framgångsrikt styra ett autonomt undervattensfordon-manipulationssystem. Modelleringen av manipulatorn utfördes först i Matlab och senare i Simulink-Simscape. När manipulatorn väl hade integrerats med AUV modellen, utvecklades LQR styrenheten också inledningsvis i Matlab och sedan i Simulink. Kontrollenheten extraherades sedan från Simulink som en C-kod och verifierades i Stonefish. Efter att ha bekräftat att LQR koden fungerade i Stonefish, jämfördes resultaten från Simulink med PID och MPC resultat för två olika banor. Data för jämförelse och statistisk analys delades in i de två bana-scenarierna (horisontella och vertikala), eftersom viktmatriserna för båda kontrollerna var olika. När man tittar på systemets övergripande beteende hade Model Predictive Controller (MPC) och LQR liknande resultat när det gäller stigningstid, överskott, steady-state fel och robusthet mot störningar. Ett förväntat faktum för MPC var att det tar den längsta körtiden för båda scenarierna. Slutligen, som väntat, hade PID det sämsta svaret av alla tre kontrollerna, i båda scenarierna. Implementering av ett PID på ett olinjärt system gav många oscillationer utan att kunna stabilisera sig vid referensvärdet, vilket gav ett stort steady-state fel. Dessutom kunde den inte motverka bullerstörningarna i signalen.
|
Page generated in 0.1099 seconds