• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1063
  • 358
  • 156
  • 97
  • 56
  • 29
  • 21
  • 14
  • 12
  • 10
  • 10
  • 9
  • 7
  • 6
  • 5
  • Tagged with
  • 2247
  • 830
  • 809
  • 344
  • 239
  • 229
  • 223
  • 223
  • 221
  • 219
  • 190
  • 189
  • 184
  • 170
  • 164
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A PATTERN RECOGNITION APPROACH TO POSTURAL STABILITY AND PREDICTION OF WORKPLACE INJURY

VENKATESAN, JAYARAM January 2006 (has links)
No description available.
122

Development of Predictive Formulae for the A1 Temperature in Creep Strength Enhanced Ferritic Steels

Wang, Lun 01 November 2010 (has links)
No description available.
123

ADVANCES IN MODEL PREDICTIVE CONTROL

Kheradmandi, Masoud January 2018 (has links)
In this thesis I propose methods and strategies for the design of advanced model predictive control designs. The contributions are in the areas of data-driven model based MPC, model monitoring and explicit incorporation of closed-loop response considerations in the MPC, while handling issues such as plant-model mismatch, constraints and uncertainty. In the initial phase of this research, I address the problem of handling plant-model mismatch by designing a subspace identification based MPC framework that includes model monitoring and closed-loop identification components. In contrast to performance monitoring based approaches, the validity of the underlying model is monitored by proposing two indexes that compare model predictions with measured past output. In the event that the model monitoring threshold is breached, a new model is identified using an adapted closed-loop subspace identification method. To retain the knowledge of the nominal system dynamics, the proposed approach uses the past training data and current input, output and set-point as the training data for re-identification. A model validity mechanism then checks if the new model predictions are better than the existing model, and if they are, then the new model is utilized within the MPC. Next, the proposed MPC with re-identification method is extended to batch processes. To this end, I first utilize a subspace-based model identification approach for batch processes to be used in model predictive control. A model performance index is developed for batch process, then in the case of poor prediction, re-identification is triggered to identify a new model. In order to emphasize on the recent batch data, the identification is developed in order to increase the contribution of the current data. In another direction, the stability of data driven predictive control is addressed. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI) model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. Finally, I address the problem of control of nonlinear systems to deliver a prescribed closed-loop behavior. In particular, the framework allows for the practitioner to first specify the nature and specifics of the desired closed-loop behavior (e.g., first order with smallest time constant, second order with no more than a certain percentage overshoot, etc.). An optimization based formulation then computes the control action to deliver the best attainable closed loop behavior. To decouple the problems of determining the best attainable behavior and tracking it as closely as possible, the optimization problem is posed and solved in two tiers. In the first tier, the focus is on determining the best closed-loop behavior attainable, subject to stability and tracking constraints. In the second tier, the inputs are tweaked to possibly improve the tracking of the optimal output trajectories given by the first tier. The effectiveness of all of the proposed methods are illustrated through simulations on nonlinear systems. / Dissertation / Doctor of Philosophy (PhD)
124

The predictive moment: reverie, connection and predictive processing

McVey, Lynn, Nolan, G., Lees, J. 16 December 2020 (has links)
Yes / According to the theory of predictive processing, understanding in the present involves non-consciously representing the immediate future, based on probabilistic inference shaped by learning from the past. This paper suggests links between this neuroscientific theory and the psychoanalytic concept of reverie–an empathic, containing attentional state–and considers implications for the ways therapists intuit implicit material in their clients. Using findings from a study about therapists’ experiences of this state, we propose that reverie can offer practitioners from diverse theoretical s a means to enter the predictive moment deeply, making use of its subtle contents to connect with clients.
125

A Queueing Theoretic Approach to Gridlock Prediction in Emergency Departments

Caglar, Toros 25 August 2005 (has links)
When an emergency department (ED) decides that it is not going to be able to serve any more newly arriving patients, it declares "diversion". When an ED is on diversion, it suspends arrivals that can be controlled by forcing some or all of the incoming emergency medical system (EMS) transport units to search for alternate treatment facilities for their patients. This search causes both patients and EMS crew to loose valuable time. Contrary to the general belief that suggests diversions are not very common, the results of the American Hospital Association survey present an example where one third of the studied hospitals were on diversion more than 20% of the three-day study period. Past research indicates that the lack of critical care beds in the hospital is the primary contributor to ambulance diversion. When patients need to be transferred from the ED to the hospital with no available beds in the hospital, they continue occupying their beds (i.e. the patient is boarding). While they are boarding in the ED, the associated staff is idle, and their bed cannot be used to treat other patients. Boarders in the ED lead to gridlock, which is defined as the situation when no new patient can be accepted to the ED until a hospital bed becomes available. In this research, we developed a predictive model to provide probabilities of entering gridlock within a time horizon, given the current state of the system. These real-time predictions are provided for a relatively short time horizon, and in order to be useful, they need to be used in conjunction with effective preventive measures that can be applied quickly. The predictive model is based on a queueing theoretic approach and encapsulated in a user-friendly Visual Basic program in order to calculate and provide gridlock probabilities. Two systems, one with low (24% - System 1), and one with high (81% - System 2) gridlock probability were simulated in conjunction with our predictive model and preventive measures. When a gridlock was found imminent, the number of ED beds was temporarily increased, attempting to prevent gridlock. With only 3 additional beds, the probability of gridlock decreased to 6% in System 1 and 58% in System 2. With 5 additional beds, gridlocks in System 1 were almost eliminated while System 2 entered gridlock only 34% of the time. Our results indicate that by temporarily increasing the number of ED beds in the event of an imminent gridlock, the proportion of time that system enters gridlock can be significantly reduced. / Master of Science
126

Model Reduction and Nonlinear Model Predictive Control of Large-Scale Distributed Parameter Systems with Applications in Solid Sorbent-Based CO2 Capture

Yu, Mingzhao 01 April 2017 (has links)
This dissertation deals with some computational and analytic challenges for dynamic process operations using first-principles models. For processes with significant spatial variations, spatially distributed first-principles models can provide accurate physical descriptions, which are crucial for offline dynamic simulation and optimization. However, the large amount of time required to solve these detailed models limits their use for online applications such as nonlinear model predictive control (NMPC). To cope with the computational challenge, we develop computationally efficient and accurate dynamic reduced order models which are tractable for NMPC using temporal and spatial model reduction techniques. Then we introduce an input and state blocking strategy for NMPC to further enhance computational efficiency. To improve the overall economic performance of process systems, one promising solution is to use economic NMPC which directly optimizes the economic performance based on first-principles dynamic models. However, complex process models bring challenges for the analysis and design of stable economic NMPC controllers. To solve this issue, we develop a simple and less conservative regularization strategy with focuses on a reduced set of states to design stable economic NMPC controllers. In this thesis, we study the operation problems of a solid sorbent-based CO2 capture system with bubbling fluidized bed (BFB) reactors as key components, which are described by a large-scale nonlinear system of partial-differential algebraic equations. By integrating dynamic reduced models and blocking strategy, the computational cost of NMPC can be reduced by an order of magnitude, with almost no compromise in control performance. In addition, a sensitivity based fast NMPC algorithm is utilized to enable the online control of the BFB reactor. For economic NMPC study, compared with full space regularization, the reduced regularization strategy is simpler to implement and lead to less conservative regularization weights. We analyze the stability properties of the reduced regularization strategy and demonstrate its performance in the economic NMPC case study for the CO2 capture system.
127

The mind as a predictive modelling engine : generative models, structural similarity, and mental representation

Williams, Daniel George January 2018 (has links)
I outline and defend a theory of mental representation based on three ideas that I extract from the work of the mid-twentieth century philosopher, psychologist, and cybernetician Kenneth Craik: first, an account of mental representation in terms of idealised models that capitalize on structural similarity to their targets; second, an appreciation of prediction as the core function of such models; and third, a regulatory understanding of brain function. I clarify and elaborate on each of these ideas, relate them to contemporary advances in neuroscience and machine learning, and favourably contrast a predictive model-based theory of mental representation with other prominent accounts of the nature, importance, and functions of mental representations in cognitive science and philosophy.
128

Control of a Ground Source Heat Pump using Hybrid Model Predictive Control / Reglering av en bergvärmepump med hjälp av hybrid modellprediktiv reglering

Sundbrandt, Markus January 2011 (has links)
The thesis has been conducted at Bosch Thermoteknik AB and its aim is to develop a Model Predictive Control (MPC) controller for a ground source heat pump which minimizes the power consumption while being able to keep the inside air temperature and Domestic Hot Water (DHW) temperature within certain comfortintervals. First a model of the system is derived, since the system consists of both continuous and binary states a hybrid model is used. The MPC controller utilizes the model to predict the future states of the system, and by formulating an optimizationproblem an optimal control is achieved. The MPC controller is evaluated and compared to a conventional controller using simulations. After some tuning the MPC controller is capable of maintaining the inside air and DHW temperature at their reference levels without oscillating too much. The MPC controller’s general performance is quite similar to the conventional controller, but with a power consumption which is 1-3 % lower. A simulation using an inside air temperature reference which is lowered during the night is also conducted, it achieved a power consumption which was 7.5 % lower compared to a conventional controller.
129

Commande prédictive distribuée pour la gestion de l'énergie dans le bâtiment Distributed model predictive control for energy management in building

Lamoudi, Mohamed Yacine 29 November 2012 (has links) (PDF)
À l'heure actuelle, les stratégies de gestion de l'énergie pour les bâtiments sontprincipalement basées sur une concaténation de règles logiques. Bien que cette approcheoffre des avantages certains, particulièrement lors de sa mise en oeuvre sur des automatesprogrammables, elle peine à traiter la diversité de situations complexes quipeuvent être rencontrées (prix de l'énergie variable, limitations de puissance, capacitéde stockage d'énergie, bâtiments de grandes dimension).Cette thèse porte sur le développement et l'évaluation d'une commande prédictivepour la gestion de l'énergie dans le bâtiment ainsi que l'étude de l'embarcabilité del'algorithme de contrôle sur une cible temps-réel (Roombox - Schneider-Electric).La commande prédictive est basée sur l'utilisation d'un modèle du bâtiment ainsique des prévisions météorologiques et d'occupation afin de déterminer la séquencede commande optimale à mettre en oeuvre sur un horizon de prédiction glissant.Seul le premier élément de cette séquence est en réalité appliqué au bâtiment. Cetteséquence de commande optimale est obtenue par la résolution en ligne d'un problèmed'optimisation. La capacité de la commande prédictive à gérer des systèmes multivariablescontraints ainsi que des objectifs économiques, la rend particulièrementadaptée à la problématique de la gestion de l'énergie dans le bâtiment.Cette thèse propose l'élaboration d'un schéma de commande distribué pour contrôlerles conditions climatiques dans chaque zone du bâtiment. L'objectif est de contrôlersimultanément: la température intérieure, le taux de CO2 ainsi que le niveaud'éclairement dans chaque zone en agissant sur les équipements présents (CVC, éclairage,volets roulants). Par ailleurs, le cas des bâtiments multi-sources (par exemple:réseau électrique + production locale solaire), dans lequel chaque source d'énergie estcaractérisée par son propre prix et une limitation de puissance, est pris en compte.Dans ce contexte, les décisions relatives à chaque zone ne peuvent plus être effectuéesde façon indépendante. Pour résoudre ce problème, un mécanisme de coordinationbasé sur une décomposition du problème d'optimisation centralisé est proposé. Cettethèse CIFRE 1 a été préparée au sein du laboratoire Gipsa-lab en partenariat avecSchneider-Electric dans le cadre du programme HOMES (www.homesprogramme.com).
130

Path Following Model Predictive Control for Center-Articulated Vehicles

Vallinder, Gustav January 2021 (has links)
Increased safety and productivity are driving factors for the trend in the mining industry where equipment and machines increasingly get automated. An example is the load-haul-dump vehicle, which is a machine that is used for transport of ore in underground mines. The cyclic load-haul-dump process is well suited for automation and automated loaders are commercially available today. Recent advances in autonomous driving have raised questions if there are efficiency gains that can be made by improving the path following algorithms that are used in the control. The aim of this thesis is to investigate the usage of model predictive control for path following for center-articulated mining vehicles. Two path following nonlinear model predictive controllers are designed and implemented. One controller is based on an error dynamics model, formulated as a regulation problem and implemented with the open source NMPC-library GRAMPC. The second controller is based on a kinematic model, formulated as a reference tracking NMPC problem and implemented using the embedded-MPC software tool FORCESPRO. The controllers are simulated on the same hardware that is used in real load-haul-dump vehicles, in a simulation environment provided by Epiroc Rock Drills AB. The results from the simulations show that both controllers can successfully follow a path, with a similar level of path error and less aggressive control actions compared to the current path following controller. The implemented controllers perform the control computations within a range of milliseconds on the embedded hardware, which is fast enough for real-time operation of the load-haul-dump vehicle.

Page generated in 0.0508 seconds