111 |
Développement d'un dispositif expérimental pour l'analyse de la structure de flammes de prémélanges à haute pression par diagnostics laser : application aux flammes méthane/air et biogaz/air / Implementation of a combustion facility for flame structure analysis at high-pressure : application to methane/air and biogas/air flamesMatynia, Alexis 06 April 2011 (has links)
L’optimisation des systèmes de production d’énergie par combustion requiert une connaissance précise de la cinétique de combustion. Cependant, la majorité des systèmes de production d’énergie par combustion fonctionnent à haute pression et il est reconnu que la pression a une influence sur la cinétique de combustion. En laboratoire, l’analyse de la structure de flamme laminaire se présente comme un outil puissant pour étudier la chimie de la combustion. A ce jour, la plupart des travaux menés ont été réalisés à des pressions inférieures ou égales à la pression atmosphérique. Au cours de cette thèse, un dispositif expérimental pour l’analyse de structure de flammes laminaires, à contre-courants et à haute pression a été mis en place. Il permet de stabiliser des flammes de CH4/air et CH4/CO2/air jusqu’à 0,7 MPa et l’étude de leur structure par diagnostics laser. Les profils de concentration de OH dans les flammes CH4/air et CH4/CO2/air à différentes richesses (=0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser et calibrés en concentration par absorption laser. Pour cela, la longueur du milieu absorbant a été déterminée par Fluorescence Induite par Plan Laser (PLIF). Une attention particulière a été portée aux corrections du signal de fluorescence prenant en compte l’élargissement de raie et le taux de collisions, qui augmentent avec la pression. Les profils expérimentaux obtenus ont été comparés à la modélisation à l’aide du code de calcul OPPDIF et des mécanismes cinétiques GRI-Mech3.0 et GDFKin®3.0. En parallèle, une analyse spectroscopique des flammes de CH4/air à haute pression a été entreprise. / The optimisation of practical combustion devices requires a detailed knowledge of the combustion kinetic. However, most practical combustion systems operate at high pressure and it is known that pressure has an influence on combustion kinetics. In laboratory, the analysis of laminar flame structure is a powerful tool for studying combustion chemistry. However, most of studies have been realised at pressures under or equal to atmospheric pressure. During this thesis, an experimental device has been implemented for the study of the structure of high pressure counterflow flames. It allows the stabilisation and the study of CH4/air and CH4/CO2/air flame structure through laser diagnostics until 0.7 MPa. CH4/air and CH4/CO2/air flames have been studied for a various range of stoichiometry (equivalence ratios from 0.7 to 1.2) and pressures (0.1 MPa to 0.7 MPa). Experimental OH concentration profiles have been measured by Laser Induced Fluorescence and calibrated by laser absorption. To do this, absorption path length has been determined by Planar Laser Induced Fluorescence (PLIF). Great care has been attached to the determination of the fluorescence signal by taking into account the line broadening and de-excitation by quenching which both arise at high pressure. Experimental data were compared with modeling results obtained through the OPPDIF calculation code with GRI-Mech3.0 and GDFKin®3.0 kinetic mechanisms. In parallel, a spectroscopic analysis of the CH4/air flames has been undertaken.
|
112 |
Estudo experimental e teórico de chamas em escoamento de estagnação imersas em meios porosos inertesRoldo, Ismael January 2015 (has links)
O interesse no desenvolvimento de sistemas eficientes de combustão para reduzir a poluição ambiental e aumentar a eficiência de queima tem chamado a atenção para a combustão em meios porosos inertes. A recirculação de calor, induzida pela matriz sólida a partir dos produtos quentes para os reagentes frios, aumenta a temperatura da chama melhorando a sua estabilidade e permitindo a utilização de combustíveis com baixo poder calorífico. Um estudo teórico recente mostra que uma chama estabilizada por um plano de estagnação imersa em um meio poroso pode, sob certas condições, estender os limites de inflamabilidade de uma mistura de ar e combustível. Por outro lado, o plano de estagnação é um problema que simula o efeito da taxa de deformação do escoamento sobre a estabilidade da chama, o que é relevante para várias configurações de queimador poroso. Portanto, o foco deste trabalho é o estudo da combustão em um queimador poroso com um plano de estagnação. Um experimento é conduzido com empacotamento de esferas, onde uma chama pode ser estabilizada por plano de estagnação devido a um anteparo. A razão de equivalência e a taxa de deformação são controladas pelos fluxos de ar e de combustível e da distância entre injetor e anteparo. A posição da chama é aproximadamente determinada pelo campo de temperaturas medidas por termopares. Complementarmente é realizada uma análise numérica simplificada do problema na qual se pode verificar o efeito da taxa de deformação sobre a estabilidade de chamas em queimadores porosos. Os resultados mostram que é possível estabilizar chamas no interior do meio poroso com plano de estagnação, porém, não foi possível atribuir um aumento de temperatura devido ao aumento da taxa de deformação. / The interest in developing efficient combustion systems to reduce environmental pollution and increase the burning efficiency has called attention to the combustion in inert porous media. The heat recirculation, induced by the solid matrix, from the hot products to the incoming cold reactants, increases the flame temperature and improves its stability, allowing for the use of fuels with low heat content. A recent study shows theoretically that a flame stabilized by a stagnation plane immersed in a porous medium may, under certain conditions, to extend the flammability limits of a mixture of fuel and air. On the other hand, the stagnation plane imposes a certain strain rate on the flow field, which is relevant to various porous burner configurations. Therefore, the focus of this work is the study of combustion in a porous burner with a stagnation plane. An experiment is conducted with packing bed of spheres where a flame can be stabilized against a stagnation plane. The equivalence ratio and the strain rate are controlled by the flows of air and fuel and the distance between the injector and the stagnation plane. The flame position is approximately determined by the temperature field measured by thermocouples. In addition, it is performed a simplified numerical analysis of the problem in which one can see the effect of the strain rate on the stability of flames in porous burners. The results show that it is possible to stabilize flames within the porous medium with stagnation plane, however, it has not been possible to assign a temperature increase due to the increased strain rate.
|
113 |
Simulation des Grandes Echelles de flammes de spray et modélisation de la combustion non-prémélangée / Large Eddy Simulation of spray flames and modelling of non-premixed combustionShum-Kivan, Francis 15 June 2017 (has links)
La combustion d’hydrocarbures représente encore aujourd’hui une part très majoritaire de la production d’énergie dans le monde, et en particulier dans l’industrie aéronautique. La plupart des brûleurs industriels sont alimentés par un carburant sous forme liquide, injecté directement dans la chambre de combustion, générant ainsi de fortes interactions entre le spray, l’écoulement turbulent et la flamme. Dans le but d’acquérir une meilleure compréhension de la structure complexe des flammes de spray, une étude numérique a été réalisée sur la configuration du brûleur diphasique KIAI, caractérisée de façon précise et complète expérimentalement. Une approche de type simulation des grandes échelles a été utilisée pour simuler la phase gazeuse tandis que la phase liquide était résolue selon un formalisme Lagrangien déterministe (LES-DPS). L’analyse détaillée de la structure de flamme de spray permet de mettre en exergue le rôle important de la combustion non prémélangée dans ce type de flamme. Cela a motivé dans une seconde étape le développement d’une nouvelle approche pour modéliser les flammes de diffusion turbulentes. Le modèle présenté s’appuie sur la réponse des flammes de diffusion laminaires au maillage, à l’étirement et au plissement. Le dégagement de chaleur global de la flamme a été analysé dans des configurations de complexité croissante, et la capacité du modèle à le décrire a été évaluée. / The combustion of hydrocarbons still represents a major part of the worldwide production of energy, especially in the aeronautical industry. Most industrial burners are fed with liquid fuel that is directly injected in the combustion chamber, generating a strong interaction between the spray, the turbulent flow and the flame. In order to provide a better understanding of turbulent spray flame complex structures, a numerical study has been performed on the two-phase flow burner KIAI which has been experimentally fully characterized. Numerical simulations consist of Large Eddy Simulation coupled to Discrete Particle Simulation for the dispersed phase (LES-DPS). A detailed analysis of the flame structure shows that non-premixed combustion plays an important role in this type of spray flame. This motivates, in a second step of the present work, the development of a new approach to model turbulent diffusion flames. The model is based on the response to the mesh, strain rate and wrinkling. The global flame heat release is analyzed through configurations of increasing complexity and the capacity of the model to describe it is evaluated.
|
114 |
Estudo experimental e teórico de chamas em escoamento de estagnação imersas em meios porosos inertesRoldo, Ismael January 2015 (has links)
O interesse no desenvolvimento de sistemas eficientes de combustão para reduzir a poluição ambiental e aumentar a eficiência de queima tem chamado a atenção para a combustão em meios porosos inertes. A recirculação de calor, induzida pela matriz sólida a partir dos produtos quentes para os reagentes frios, aumenta a temperatura da chama melhorando a sua estabilidade e permitindo a utilização de combustíveis com baixo poder calorífico. Um estudo teórico recente mostra que uma chama estabilizada por um plano de estagnação imersa em um meio poroso pode, sob certas condições, estender os limites de inflamabilidade de uma mistura de ar e combustível. Por outro lado, o plano de estagnação é um problema que simula o efeito da taxa de deformação do escoamento sobre a estabilidade da chama, o que é relevante para várias configurações de queimador poroso. Portanto, o foco deste trabalho é o estudo da combustão em um queimador poroso com um plano de estagnação. Um experimento é conduzido com empacotamento de esferas, onde uma chama pode ser estabilizada por plano de estagnação devido a um anteparo. A razão de equivalência e a taxa de deformação são controladas pelos fluxos de ar e de combustível e da distância entre injetor e anteparo. A posição da chama é aproximadamente determinada pelo campo de temperaturas medidas por termopares. Complementarmente é realizada uma análise numérica simplificada do problema na qual se pode verificar o efeito da taxa de deformação sobre a estabilidade de chamas em queimadores porosos. Os resultados mostram que é possível estabilizar chamas no interior do meio poroso com plano de estagnação, porém, não foi possível atribuir um aumento de temperatura devido ao aumento da taxa de deformação. / The interest in developing efficient combustion systems to reduce environmental pollution and increase the burning efficiency has called attention to the combustion in inert porous media. The heat recirculation, induced by the solid matrix, from the hot products to the incoming cold reactants, increases the flame temperature and improves its stability, allowing for the use of fuels with low heat content. A recent study shows theoretically that a flame stabilized by a stagnation plane immersed in a porous medium may, under certain conditions, to extend the flammability limits of a mixture of fuel and air. On the other hand, the stagnation plane imposes a certain strain rate on the flow field, which is relevant to various porous burner configurations. Therefore, the focus of this work is the study of combustion in a porous burner with a stagnation plane. An experiment is conducted with packing bed of spheres where a flame can be stabilized against a stagnation plane. The equivalence ratio and the strain rate are controlled by the flows of air and fuel and the distance between the injector and the stagnation plane. The flame position is approximately determined by the temperature field measured by thermocouples. In addition, it is performed a simplified numerical analysis of the problem in which one can see the effect of the strain rate on the stability of flames in porous burners. The results show that it is possible to stabilize flames within the porous medium with stagnation plane, however, it has not been possible to assign a temperature increase due to the increased strain rate.
|
115 |
Development of novel diagnostic techniques to measure heat release rate perturbations in flames / Développement de diagnostics alternatifs pour mesurer les fluctuations du taux de dégagement de chaleur dans les flammesLi, Jingxuan 30 January 2012 (has links)
Les fluctuations du taux de dégagement de chaleur sont souvent responsables d’intensification des flux thermiques aux parois, de vibrations et d’émissions sonores qui peuvent éventuellement dégénérer en instabilités thermo-acoustiques auto-entretenues. Ces phénomènes instationnaires dégradent les performances des foyers, provoquent un vieillissement prématuré de certains éléments de la chambre de combustion, voire des dégâts plus importants sur l’installation. Ces perturbations sont cependant difficiles à mesurer dans les foyers car il n’existe pas de diagnostic qui permette d'accéder directement au taux de dégagement de chaleur. L’objectif de ce travail est d'explorer deux alternatives aux solutions existantes pour accéder aux fluctuations du taux de dégagement de chaleur avec une bonne résolution temporelle. Ces nouvelles méthodes sont testées dans des configurations génériques parfaitement prémélangées pour des écoulements laminaires. La première méthode est une technique acoustique, qui repose sur la détermination du temps de vol d’ondes ultrasonores qui traversent l’écoulement. Les fluctuations du temps de vol de ces ondes sont utilisées pour détecter des perturbations de la largeur des gaz brûlés le long du chemin acoustique. Cette information permet de reconstituer les fluctuations du taux de dégagement de chaleur dans des flammes prémélangées. Les premières validations de cette méthode sont présentées pour des flammes en l'absence de perturbation externe lorsqu'elles présentent une instabilité de type Kelvin-Helmholtz pilotée par les phénomènes de flottabilité du panache des gaz brûlés. Des mesures sont ensuite conduites pour des flammes soumises à des modulations harmoniques de l'écoulement. Les données obtenues dans ces configurations sont comparées à des mesures optiques ainsi qu'à des prévisions analytiques. La seconde méthode est une technique optique utilisant un système d’interférométrie laser Doppler permettant de déterminer les fluctuations de densité intégrées le long du chemin optique. On montre dans un premier temps que les perturbations de densité sont principalement causées par des fluctuations du taux de dégagement de chaleur lorsque les flammes sont confinées. Un lien est établi pour reconstituer les perturbations du taux de dégagement de chaleur exploitant le signal de l'interféromètre. La technique est validée pour des flammes pulsées pour différentes richesses et débits. Les données obtenues sont comparées à des mesures reposant sur la chimiluminescence de la flamme. Un bon accord est obtenu pour des modulations harmoniques de l'écoulement à différentes fréquences et niveaux de perturbation. Ce travail permet de valider le principe de ces deux techniques pour détecter les perturbations du taux de dégagement de chaleur lorsque l'accès optique à la zone de combustion est réduit et lorsque des informations quantitatives résolues temporellement sont nécessaires. / Heat release rate disturbances are the sources of additional thermal stresses, direct and indirect combustion noise and undesirable vibrations. In extreme cases, these perturbations may even cause destructive combustion instabilities. These quantities are difficult to measure in practical burners. The objective of this work is to develop two alternative diagnostics to measure heat release rate fluctuations in unsteady flames. These techniques are validated in generic configurations for perfectly premixed laminar flames. The first method is an acoustic technique, which is based on the measurement of the travel time of ultrasonic waves through the flames. Fluctuations of the sound propagation time transmission through unsteady flames are used to estimate perturbations in the burned gases width along the acoustic path. This information is then used to reconstruct heat release rate fluctuations. This technique is validated in the cases of unstable laminar premixed flames driven by buoyancy forces and for flames submitted to harmonic flow velocity modulations. Analytical expressions are derived linking fluctuations in heat release rate and disturbances of the sound travel time. Measurements made with this acoustic technique are compared with optical detections based on the flame chemiluminescence and with predictions from an analytical model. Good agreements are obtained between these different methods validating the proposed technique. The second method envisaged is an optical technique based on a Laser Interferometric Vibrometer used to measure integrated density perturbations along the optical path of a laser beam. It is shown that density disturbances along this path result mainly from heat release rate fluctuations when the flames are confined. A link is established to reconstruct heat release rate disturbances from the signal of the interferometer. The technique is validated in the case of pulsated laminar premixed flames. Measurements are compared to line-of-sight integrated chemiluminescence emission measurements. A good agreement is obtained for harmonic flow modulations at different forcing frequencies and perturbation levels for flames operating at different flow conditions. This work validates the principle of this alternative technique for detecting heat release rate perturbations.
|
116 |
Estudo experimental e teórico de chamas em escoamento de estagnação imersas em meios porosos inertesRoldo, Ismael January 2015 (has links)
O interesse no desenvolvimento de sistemas eficientes de combustão para reduzir a poluição ambiental e aumentar a eficiência de queima tem chamado a atenção para a combustão em meios porosos inertes. A recirculação de calor, induzida pela matriz sólida a partir dos produtos quentes para os reagentes frios, aumenta a temperatura da chama melhorando a sua estabilidade e permitindo a utilização de combustíveis com baixo poder calorífico. Um estudo teórico recente mostra que uma chama estabilizada por um plano de estagnação imersa em um meio poroso pode, sob certas condições, estender os limites de inflamabilidade de uma mistura de ar e combustível. Por outro lado, o plano de estagnação é um problema que simula o efeito da taxa de deformação do escoamento sobre a estabilidade da chama, o que é relevante para várias configurações de queimador poroso. Portanto, o foco deste trabalho é o estudo da combustão em um queimador poroso com um plano de estagnação. Um experimento é conduzido com empacotamento de esferas, onde uma chama pode ser estabilizada por plano de estagnação devido a um anteparo. A razão de equivalência e a taxa de deformação são controladas pelos fluxos de ar e de combustível e da distância entre injetor e anteparo. A posição da chama é aproximadamente determinada pelo campo de temperaturas medidas por termopares. Complementarmente é realizada uma análise numérica simplificada do problema na qual se pode verificar o efeito da taxa de deformação sobre a estabilidade de chamas em queimadores porosos. Os resultados mostram que é possível estabilizar chamas no interior do meio poroso com plano de estagnação, porém, não foi possível atribuir um aumento de temperatura devido ao aumento da taxa de deformação. / The interest in developing efficient combustion systems to reduce environmental pollution and increase the burning efficiency has called attention to the combustion in inert porous media. The heat recirculation, induced by the solid matrix, from the hot products to the incoming cold reactants, increases the flame temperature and improves its stability, allowing for the use of fuels with low heat content. A recent study shows theoretically that a flame stabilized by a stagnation plane immersed in a porous medium may, under certain conditions, to extend the flammability limits of a mixture of fuel and air. On the other hand, the stagnation plane imposes a certain strain rate on the flow field, which is relevant to various porous burner configurations. Therefore, the focus of this work is the study of combustion in a porous burner with a stagnation plane. An experiment is conducted with packing bed of spheres where a flame can be stabilized against a stagnation plane. The equivalence ratio and the strain rate are controlled by the flows of air and fuel and the distance between the injector and the stagnation plane. The flame position is approximately determined by the temperature field measured by thermocouples. In addition, it is performed a simplified numerical analysis of the problem in which one can see the effect of the strain rate on the stability of flames in porous burners. The results show that it is possible to stabilize flames within the porous medium with stagnation plane, however, it has not been possible to assign a temperature increase due to the increased strain rate.
|
117 |
Numerical modelling of compressible turbulent premixed hydrogen flamesTurquand D'Auzay, Charles January 2016 (has links)
Turbulent combustion has a profound effect on the way we live our lives; homes and businesses predominantly rely on power generated by burning some form of fuel, and the vast majority of transport of passengers and cargo are driven by combustion. Fossil fuels remain readily available and relatively cheap, and so will continue to power the modern world for the foreseeable future. Combustion of fossil fuels produces emissions that detrimentally affect air quality, particularly in highly-populated cities, and are also widely believed to be contributing to global climate change. Consequently, increasing attention is being focused on alternative fuels, increased efficiency and reduced emissions. One alternative fuel is hydrogen, which introduces challenges in end-usage, storage and safety that are not encountered with more conventional fuels. Advances in computational power and software technology means that numerical simulation has a growing role in the development of combustors and safety evaluation. Despite these advances, many challenges remain; the broad range of time and length scales involved are coupled with complex thermodynamics and chemistry on top of turbulent fluid mechanics, which means that detailed simulations of even relatively-simple burners are still prohibitively expensive. Engineering turbulent flame models are required to reduce computational expense, and the challenge is to retain as much of the flow physics as possible. Furthermore, the choice of numerical approach has a significant effect on the quality of simulation, and different target applications place different demands on the numerical scheme. In the case of hydrogen explosion, the approach needs to be able to capture a range of physical behaviours including turbulence, low-speed deflagration, high-speed shock waves and potentially detonations. One such numerical approach that has enjoyed widespread success is finite volumes schemes based on the Godunov method. These methods perform well at all speeds, and have positive shock-capturing capability, but recent studies have demonstrated difficulties with numerical stability for more complex thermodynamics, specifically in the case of fully-conservative methods for multi-component fluids with varying thermodynamic properties. A recent development is the so-called double-flux method, which retains many of the positive properties of the fully-conservative approaches and does not suffer from the same numerical instabilities, but is quasi-conservative and involves additional computational expense. The present work consolidates the state-of-the-art in the literature, and considers two equation sets, based on mass fraction and volume fraction, respectively, along with fully-conservative and quasiconservative schemes. Comprehensive validation and evaluation of the different approaches is presented. It was found that both quasi-conservative approaches performed well, with a better conservative behaviour for the quasi-conservative volume fraction, but a better stability for the quasi-conservative mass fraction. Finally, the numerical tool developed is applied to turbulent combustion of premixed hydrogen in the context of the semi-confined experiments from the University of Sydney. The LES results showed an good overall agreement with the experimental data, and the critical parameters such as overpressure and flame speed where globally well captured, highlighting the large potential of LES for safety analysis.
|
118 |
Flame turbulence interaction in premixed turbulent combustionAhmed, Umair January 2014 (has links)
No description available.
|
119 |
Large eddy simulation of premixed combustion using flameletsLangella, Ivan January 2016 (has links)
Large Eddy Simulation (LES) has potential to address unsteady phenomena in turbulent premixed flames and to capture turbulence scales and their influence on combustion. Thus, this approach is gaining interest in industry to analyse turbulent reacting flows. In LES, the dynamics of large-scale turbulent eddies down to a cut-off scale are solved, with models to mimic the influences of sub-grid scales. Since the flame front is thinner than the smallest scale resolved in a typical LES, the premixed combustion is a sub-grid scale (SGS) phenomenon and involves strong interplay among small-scale turbulence, chemical reactions and molecular diffusion. Sub-grid scale combustion models must accurately represent these processes. When the flame front is thinner than the smallest turbulent scale, the flame is corrugated by the turbulence and can be seen as an ensemble of thin, one-dimensional laminar flames (flamelets). This allows one to decouple turbulence from chemistry, with a significant reduction in computational effort. However, potentials and limitations of flamelets are not fully explored and understood. This work contributes to this understanding. Two models are identified, one based on an algebraic expression for the reaction rate of a progress variable and the assumption of fast chemistry, the other based on a database of unstrained flamelets in which reaction rates are stored and parametrised using a progress variable and its SGS variance, and their potentials are shown for a wide range of premixed combustion conditions of practical interest. The sensitivity to a number of model parameters and boundary conditions is explored to assess the robustness of these models. This work shows that the SGS variance of progress variable plays a crucial role in the SGS reaction rate modelling and cannot be obtained using a simple algebraic closure like that commonly used for a passive scalar. The use of strained flamelets to include the flame stretching effects is not required when the variance is obtained from its transport equation and the resolved turbulence contains predominant part of the turbulent kinetic energy. Thus, it seems that SGS closure using unstrained flamelets model is robust and adequate for wide range of turbulent premixed combustion conditions.
|
120 |
Effect of hydrogen addition and burner diameter on the stability and structure of lean, premixed flamesKaufman, Kelsey Leigh 01 May 2014 (has links)
Low swirl burners (LSBs) have gained popularity in heating and gas power generation industries, in part due to their proven capacity for reducing the production of NOx, which in addition to reacting to form smog and acid rain, plays a central role in the formation of the tropospheric ozone layer. With lean operating conditions, LSBs are susceptible to combustion instability, which can result in flame extinction or equipment failure. Extensive work has been performed to understand the nature of LSB combustion, but scaling trends between laboratory- and industrial-sized burners have not been established. Using hydrogen addition as the primary method of flame stabilization, the current work presents results for a 2.54 cm LSB to investigate potential effects of burner outlet diameter on the nature of flame stability, with focus on flashback and lean blowout conditions. In the lean regime, the onset of instability and flame extinction have been shown to occur at similar equivalence ratios for both the 2.54 cm and a 3.81 cm LSB and depend on the resolution of equivalence ratios incremented. Investigations into flame structures are also performed. Discussion begins with a derivation for properties in a multicomponent gas mixture used to determine the Reynolds number (Re) to develop a condition for turbulent intensity similarity in differently-sized LSBs. Based on this requirement, operating conditions are chosen such that the global Reynolds number for the 2.54 cm LSB is within 2% of the Re for the 3.81 cm burner. With similarity obtained, flame structure investigations focus on flame front curvature and flame surface density (FSD). As flame structure results of the current 2.54 cm LSB work are compared to results for the 3.81 cm LSB, no apparent relationship is shown to exist between burner diameter and the distribution of flame surface density. However, burner diameter is shown to have a definite effect on the flame front curvature. In corresponding flow conditions, a decrease in burner diameter results a broader distribution of curvature and an increased average curvature, signifying that compared to the larger 3.81 cm LSB, the flame front of the smaller burner contains tighter, smaller scale wrinkling.
|
Page generated in 0.0461 seconds