• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental Investigation of Tornado-Induced Pressures on Low-Rise Buildings

Williams, Jason 21 April 2022 (has links)
Tornadoes pose a significant danger to human life and structures. Research regarding the effects of tornado-induced loads on residential buildings is in incipient stages and there are no specialized construction standards in place to recommend criteria applicable to structures for withstanding tornadic winds. Three residential house models with different geometries were tested in the Wind-induced Damage Simulator (WDS) built at the University of Ottawa. The WDS is capable of simulating pressures induced by multidirectional and tornadic winds. The peak pressure coefficients were calculated on the walls and roofs of the houses and an analysis was performed on the effects of house model orientation, roof pitch angle, and exposure duration. The peak pressure coefficients were then compared to the NBCC 2015 code to clarify if there were any limitations of the current wind design criteria. It was found that the building orientation did not have a significant effect on pressure coefficient trends and magnitudes on the walls and roofs. For the low roof pitch angle models, it was noticed that the suction on the roof was much greater than the higher roof pitch angle models. An interesting observation was made that found that the leading edge of the walls in the direction of the clockwise tornadic flow were always under greater suction than the trailing edge, which causes a torsional effect on the entire model. When comparing the peak pressure coefficient values to the NBCC 2015 recommended values for the secondary cladding members, it was found that the CpCg stipulated in the code were similar to the experimental tornado Cp’s for the walls. However, the Cp’s on the roof were much greater in the experiments when compared to the NBCC 2015. The CpCg of Zones S and Zone R, which are the edges and central regions of the roof, greatly exceed the minimum values in the NBCC 2015. More experiments for residential house models of different geometries should be conducted in order to propose new tornado-induced pressure coefficients to be used in the design of the structure located in tornado-prone areas.Tornadoes pose a significant danger to human life and structures. Research regarding the effects of tornado-induced loads on residential buildings is in incipient stages and there are no specialized construction standards in place to recommend criteria applicable to structures for withstanding tornadic winds. Three residential house models with different geometries were tested in the Wind-induced Damage Simulator (WDS) built at the University of Ottawa. The WDS is capable of simulating pressures induced by multidirectional and tornadic winds. The peak pressure coefficients were calculated on the walls and roofs of the houses and an analysis was performed on the effects of house model orientation, roof pitch angle, and exposure duration. The peak pressure coefficients were then compared to the NBCC 2015 code to clarify if there were any limitations of the current wind design criteria. It was found that the building orientation did not have a significant effect on pressure coefficient trends and magnitudes on the walls and roofs. For the low roof pitch angle models, it was noticed that the suction on the roof was much greater than the higher roof pitch angle models. An interesting observation was made that found that the leading edge of the walls in the direction of the clockwise tornadic flow were always under greater suction than the trailing edge, which causes a torsional effect on the entire model. When comparing the peak pressure coefficient values to the NBCC 2015 recommended values for the secondary cladding members, it was found that the CpCg stipulated in the code were similar to the experimental tornado Cp’s for the walls. However, the Cp’s on the roof were much greater in the experiments when compared to the NBCC 2015. The CpCg of Zones S and Zone R, which are the edges and central regions of the roof, greatly exceed the minimum values in the NBCC 2015. More experiments for residential house models of different geometries should be conducted in order to propose new tornado-induced pressure coefficients to be used in the design of the structure located in tornado-prone areas.
12

Analysis of surface pressure and velocity fluctuations in the flow over surface-mounted prisms

Ge, Zhongfu 12 January 2005 (has links)
The full-scale value of the Reynolds number associated with wind loads on structures is of the order of 10^7. This is further complicated by the high levels of turbulence fluctuations associated with strong winds. On the other hand, numerical and wind tunnel simulations are usually carried out at smaller values of Re. Consequently, the validation of these simulations should only be based on physical phenomena derived with tools capable of their identification. In this work, two physical aspects related to extreme wind loads on low-rise structures are examined. The first includes the statistical properties and prediction of pressure peaks. The second involves the identification of linear and nonlinear relations between pressure peaks and associated velocity fluctuations. The first part of this thesis is concerned with the statistical properties of surface pressure time series and their variations under different incident flow conditions. Various statistical tools, including space-time correlation, conditional sampling, the probability plot and the probability plot correlation coefficient, are used to characterize pressure peaks measured on the top surface of a surface-mounted prism. The results show that the Gamma distribution provides generally the best statistical description for the pressure time series, and that the method of moments is sufficient for determining its parameters. Additionally, the shape parameter of the Gamma distribution can be directly related to the incident flow conditions. As for prediction of pressure peaks, the results show that the probability of non-exceedence can best be derived from the Gumbel distribution. Two approaches for peak prediction, based on analysis of the parent pressure time series and of observed peaks, are presented. The prediction based on the parent time series yields more conservative estimates of the probability of non-exceedence. The second part of this thesis is concerned with determining the linear and nonlinear relations between pressure peaks and the velocity field. Validated by analytical test signals, the wavelet-based analysis is proven to be effective and accurate in detecting intermittent linear and nonlinear relations between the pressure and velocity fluctuations. In particular, intermittent linear and nonlinear velocity pressure relations are observed over the nondimensional frequency range fH/U<0.32. These results provide the basis for flow parameters and characteristics required in the simulation of the wind loads on structures. / Ph. D.
13

Analysis of sequential active and passive arching in granular soils

Aqoub, K., Mohamed, Mostafa H.A., Sheehan, Therese 17 May 2018 (has links)
Yes / Arching in soils has received great attention due to its significance on the soil–underground structure interaction. The state of stress on underground structures as a result of cycles of active and passive arching was neither explored nor systematically assessed. In the present study, comprehensive investigation was carried out to examine: i. the effects of displacement direction to induce active or passive arching, ii. the behaviour of subsequent arching, iii. the effect of magnitude of initial displacement on the formation of arching and iv. the influence of soil height on sequential active and passive arching. The results showed that alternating the displacement of the underground inclusion exacerbated the formation of active and passive arching leading to a substantial reduction in shear resistance and stress redistribution. It is noted that sequentially alternating displacement of the underground inclusion was detrimental to the formation of full active and passive arches irrespective of the burial height.
14

Estudo do escoamento de ar sobre a carroceria de um ônibus usando um programa de CFD e comparação com dados experimentais / Study of the air flow around a bus using CFD software and comparison with experimental data

Carregari, André Luiz 29 May 2006 (has links)
Dois dos principais objetivos no estudo da aerodinâmica de veículos comerciais são a redução no consumo de combustível e o aumento na eficiência da refrigeração do motor. Esses objetivos podem ser alcançados através do desenvolvimento de dispositivos que modifiquem o escoamento do ar ao redor do veículo e também através da alteração da forma das superfícies externas. A inclinação das superfícies da parte traseira de um ônibus, por exemplo, tem grande influência sobre a esteira turbulenta que se forma atrás do veículo. O uso de ferramentas computacionais permite uma redução de custo e maior flexibilidade na análise aerodinâmica de autoveículos. Ainda é preciso, no entanto, que o resultado dessas ferramentas computacionais seja verificado com o maior número possível de casos para que se possa escolher e ajustar o modelo matemático de forma adequada. O objetivo do presente trabalho é a verificação dos resultados computacionais e experimentais no desenvolvimento de metodologias que visem à redução no consumo de combustível e aumento na eficiência da refrigeração do motor. Foram comparados resultados experimentais e computacionais do escoamento sobre um modelo de um ônibus comercial em escala 1:17,5. Para a realização do experimento foi utilizado um túnel de vento de seção aberta, onde foram analisadas as distribuições de pressão nas superfícies da carroceria e o arrasto aerodinâmico. Para o teste computacional, foi utilizado um software de dinâmica dos fluidos computacional em que as equações de Navier-Stokes com média de Reynolds são resolvidas pelo método dos volumes finitos usando um modelo de turbulência RNG 'capa' - 'épsilon' / Two main objectives in the study of commercial vehicle aerodynamics are the reduction in fuel consumption and the improvement in engine refrigeration efficiency. These objectives can be achieved through development of devices which vary the flow characteristics around the vehicle and also through modification of the shape of external surfaces. The slope of rear surfaces, for instance, has large influence over the wake turbulence which forms behind the vehicle. The use of computational tools yields cost reduction and greater flexibility in automotive aerodynamic analysis. There is still a need, however, for verification of results, generated by these computational tools, with the largest possible number of test cases so that the mathematical model is adequately chosen and adjusted. The objective of the present work is the verification of experimental and computational results in the development of methodologies aiming at reduction of fuel consumption and improvement in engine refrigeration efficiency. Experimental and computational aerodynamic results were compared for a commercial bus model with a 1:17.5 scale. The experiments were conducted in an open section wind tunnel where pressure distribution and aerodynamic drag were analyzed. The numerical analysis was conducted using computational fluid dynamics software which solves the Reynolds Averaged Navier-Stokes equations using the finite volume method with a RNG 'capa' - 'épsilon' turbulence model
15

Estudo do atrito lateral no arrancamento de estacas modelo instaladas por fluidização em areia

Mazutti, Júlia Hein January 2018 (has links)
O objetivo desta dissertação consiste em aprofundar o entendimento dos mecanismos que controlam o atrito lateral sob arrancamento de estacas instaladas por fluidização em areia. A técnica de instalação é estudada como uma alternativa para a utilização de estacas torpedo na fixação de plataformas offshore. Trabalhou-se em laboratório com o arrancamento de estacas metálicas circulares em modelo reduzido. Foram utilizados três diâmetros de estacas modelo, simulando três diferentes escalas: 14 mm (1:76), 16,2 mm (1:67) e 21,3 mm (1:50). Foram realizados 8 ensaios de arrancamento (24 horas após a fluidização) em estacas modelo instaladas por fluidização em solo arenoso com densidade relativa de 50% e submetido à sobrecarga de 2,236 kPa. Foram também realizados 17 ensaios de arrancamento em estacas modelo pré-instaladas (sem fluidização) em areia com densidade relativa de 30%, simulando uma instalação sem perturbação do solo, uma vez que esta é a densidade relativa aproximada que a areia atinge após o processo de fluidização. Os resultados foram comparados com pesquisas anteriores de arrancamento de estacas instaladas por fluidização em areia. Para um aumento médio de 2 vezes a tensão vertical efetiva nas estacas modelo instaladas por fluidização com sobrecarga, observa-se um ganho médio de 1,8 na resistência. O coeficiente de empuxo lateral de serviço para estes ensaios não apresentou diferenças significativas em relação ao mesmo tipo de ensaio sem sobrecarga. As estacas instaladas por fluidização com sobrecarga e estacas pré-instaladas (sem perturbação) apresentam valores de constantes e independentes das profundidades instaladas, com respectivas médias de 0,15 e 0,31. O valor de parece aumentar com o tempo para as estacas fluidizadas (efeito setup) devido à reconstituição das tensões radiais. Os valores de estacas cravadas em areia densa diminuem seu valor com o aumento da profundidade instalada (e da tensão efetiva média atuante), por restrição de dilatação, tendendo ao valor de encontrado para ensaios pré-instalados realizados neste trabalho. / The main goal of this study is to deepen the understanding of the shaft friction behavior under tension loads of piles installed by fluidization in Osório sand. The installation technique is studied as an alternative for the use of torpedo piles in offshore platforms anchoring. This work was done in laboratory with metallic circular piles in reduced model. Three diameters of model piles were used, simulating three different scales: 14 mm (1:76), 16,2 mm (1:67) and 21,3 mm (1:50). Eight pullout tests (24 hours after fluidization) were carried out on model piles installed by fluidization in sandy soil with a relative density of 50% and subjected to a surcharge of 2,236 kPa. Eighteen pullout tests were performed on pre-installed (non-fluidized) model piles in sand with a relative density of 30%, simulating an installation without soil disturbance, since this is the approximate relative density reached after the process of fluidization. The results were compared with previous studies of pullout resistance of fluidized piles in sand. For an average increase of 2 times the vertical effective stress in the model piles installed by fluidization with surcharge, an average increase of 1,8 times is observed in the pullout resistance. The lateral earth pressure coefficient on the pile shaft for these tests did not show significant differences in relation to the same type of test without surcharge. For tests installed by fluidization and pre-installed tests (without soil disturbance), remains constant and independent of the installed depths, with respective averages of 0,15 and 0,31. The value seems to increase with time for fluidized tests (setup effect) due to the reconstitution of the radial tensions. The values for pullout tests in driven model piles in dense sand decrease their value with the increase of the installed depth (and the increase of the vertical effective stress), by restriction of the expansive behavior, tending to the value found for pre-installed tests carried out in this work.
16

Wind –induced Pressure Quantification on Gable Roof Flush-Mounted Solar Panels Systems

Yakoub, Haisam 15 March 2019 (has links)
Abstract Photovoltaic (PV) solar panels are solar energy collection systems with increasing terrestrial and roof applications reported worldwide. If the terrestrial mounting does not require specific wind resistance verifications, installing them on top of flat and gable roofs implies a drastic change of the roofing systems geometry, thus a re-evaluation of the wind-induced pressure is necessary. Among the roof top applications, provisions exist for the flat roofs mounted solar panels, however, design recommendations for wind-induced loadings on PV solar panels arrays flush-mounted on gable roofs are not fully developed in current wind loading standards (SEAOC PV2-2012) and building codes (ASCE 07, NBCC 2015), in spite of the numerous applications on residential and agricultural buildings, primarily due to the limited research investigating this topic. The current dissertation employs CFD k-ɛ and LE (Large Eddy) simulations for analyzing the effects of wind acting on solar panels flush-mounted on gable roofs, considering the influence of several parameters such as: the slope of the gable roof, the wind directions, the spaces between the adjacent solar panel arrays and the clearance between the roof surface and the solar panels. A comprehensive database of solar panels with different installation parameters subjected to wind speeds were developed under the current research project. The database includes detailed distribution of wind-induced pressure coefficients for the three parallel surfaces constituting the roof-solar panels systems: the top and bottom surfaces of the panels, and the roof surface under the panels, which represents a novel approach in investigating and clarifying the wind effects on solar panels. This approach also provides in detail the variation of the pressure coefficients on the three surfaces, due to the change of installation conditions (roof slope, arrays spacing, roof clearance) and wind parameters (wind speed and wind direction). As an original contribution to the existing knowledge, this thesis found that the installation of solar arrays on gable roofs, redistributes the wind-induced pressure on both sides of the roof windward and leeward, resulting in total horizontal wind-induced pressures on the entire roof lower than that registered on the corresponding roof without solar panels. In addition, dominant resultant pressure coefficients on solar panels concluded to be lower than for the roof without panels. When the roof clearance increases, total average pressure coefficients on the roof supporting the panels decreases on both, windward and leeward sides of the roof. Moreover, when the roof clearance increases, the pressures in the cavity decrease significantly on both windward and leeward sides of the roof, which could impact the requirements for installing and fixing such panels on gable roofs. For example, for 10” clearance the flush-mounted solar panels were subject to pressure instead of suction. Similarly, when panel array spacing increases, the magnitude of the net mean pressure coefficients on the roof surface under the solar panels further decreases for all wind directions investigated.
17

Estudo do escoamento de ar sobre a carroceria de um ônibus usando um programa de CFD e comparação com dados experimentais / Study of the air flow around a bus using CFD software and comparison with experimental data

André Luiz Carregari 29 May 2006 (has links)
Dois dos principais objetivos no estudo da aerodinâmica de veículos comerciais são a redução no consumo de combustível e o aumento na eficiência da refrigeração do motor. Esses objetivos podem ser alcançados através do desenvolvimento de dispositivos que modifiquem o escoamento do ar ao redor do veículo e também através da alteração da forma das superfícies externas. A inclinação das superfícies da parte traseira de um ônibus, por exemplo, tem grande influência sobre a esteira turbulenta que se forma atrás do veículo. O uso de ferramentas computacionais permite uma redução de custo e maior flexibilidade na análise aerodinâmica de autoveículos. Ainda é preciso, no entanto, que o resultado dessas ferramentas computacionais seja verificado com o maior número possível de casos para que se possa escolher e ajustar o modelo matemático de forma adequada. O objetivo do presente trabalho é a verificação dos resultados computacionais e experimentais no desenvolvimento de metodologias que visem à redução no consumo de combustível e aumento na eficiência da refrigeração do motor. Foram comparados resultados experimentais e computacionais do escoamento sobre um modelo de um ônibus comercial em escala 1:17,5. Para a realização do experimento foi utilizado um túnel de vento de seção aberta, onde foram analisadas as distribuições de pressão nas superfícies da carroceria e o arrasto aerodinâmico. Para o teste computacional, foi utilizado um software de dinâmica dos fluidos computacional em que as equações de Navier-Stokes com média de Reynolds são resolvidas pelo método dos volumes finitos usando um modelo de turbulência RNG 'capa' - 'épsilon' / Two main objectives in the study of commercial vehicle aerodynamics are the reduction in fuel consumption and the improvement in engine refrigeration efficiency. These objectives can be achieved through development of devices which vary the flow characteristics around the vehicle and also through modification of the shape of external surfaces. The slope of rear surfaces, for instance, has large influence over the wake turbulence which forms behind the vehicle. The use of computational tools yields cost reduction and greater flexibility in automotive aerodynamic analysis. There is still a need, however, for verification of results, generated by these computational tools, with the largest possible number of test cases so that the mathematical model is adequately chosen and adjusted. The objective of the present work is the verification of experimental and computational results in the development of methodologies aiming at reduction of fuel consumption and improvement in engine refrigeration efficiency. Experimental and computational aerodynamic results were compared for a commercial bus model with a 1:17.5 scale. The experiments were conducted in an open section wind tunnel where pressure distribution and aerodynamic drag were analyzed. The numerical analysis was conducted using computational fluid dynamics software which solves the Reynolds Averaged Navier-Stokes equations using the finite volume method with a RNG 'capa' - 'épsilon' turbulence model
18

Computational Modeling of Propeller Noise: NASA SR-7A propeller

Moussa, Karim January 2014 (has links)
The aerospace industry has been concerned with propeller noise levels for years. This interest is two-fold: government regulation and comfort in cabin. This report attempts to create a simulation mechanism needed to evaluate the far-field noise generation levels. However, in order to do that, the tandem cylinder case was evaluated first as a validation step before the SR-7A propeller case was performed. Both cases use STAR-CCM+, a commercial software, to perform the simulations.
19

Estudo do atrito lateral no arrancamento de estacas modelo instaladas por fluidização em areia

Mazutti, Júlia Hein January 2018 (has links)
O objetivo desta dissertação consiste em aprofundar o entendimento dos mecanismos que controlam o atrito lateral sob arrancamento de estacas instaladas por fluidização em areia. A técnica de instalação é estudada como uma alternativa para a utilização de estacas torpedo na fixação de plataformas offshore. Trabalhou-se em laboratório com o arrancamento de estacas metálicas circulares em modelo reduzido. Foram utilizados três diâmetros de estacas modelo, simulando três diferentes escalas: 14 mm (1:76), 16,2 mm (1:67) e 21,3 mm (1:50). Foram realizados 8 ensaios de arrancamento (24 horas após a fluidização) em estacas modelo instaladas por fluidização em solo arenoso com densidade relativa de 50% e submetido à sobrecarga de 2,236 kPa. Foram também realizados 17 ensaios de arrancamento em estacas modelo pré-instaladas (sem fluidização) em areia com densidade relativa de 30%, simulando uma instalação sem perturbação do solo, uma vez que esta é a densidade relativa aproximada que a areia atinge após o processo de fluidização. Os resultados foram comparados com pesquisas anteriores de arrancamento de estacas instaladas por fluidização em areia. Para um aumento médio de 2 vezes a tensão vertical efetiva nas estacas modelo instaladas por fluidização com sobrecarga, observa-se um ganho médio de 1,8 na resistência. O coeficiente de empuxo lateral de serviço para estes ensaios não apresentou diferenças significativas em relação ao mesmo tipo de ensaio sem sobrecarga. As estacas instaladas por fluidização com sobrecarga e estacas pré-instaladas (sem perturbação) apresentam valores de constantes e independentes das profundidades instaladas, com respectivas médias de 0,15 e 0,31. O valor de parece aumentar com o tempo para as estacas fluidizadas (efeito setup) devido à reconstituição das tensões radiais. Os valores de estacas cravadas em areia densa diminuem seu valor com o aumento da profundidade instalada (e da tensão efetiva média atuante), por restrição de dilatação, tendendo ao valor de encontrado para ensaios pré-instalados realizados neste trabalho. / The main goal of this study is to deepen the understanding of the shaft friction behavior under tension loads of piles installed by fluidization in Osório sand. The installation technique is studied as an alternative for the use of torpedo piles in offshore platforms anchoring. This work was done in laboratory with metallic circular piles in reduced model. Three diameters of model piles were used, simulating three different scales: 14 mm (1:76), 16,2 mm (1:67) and 21,3 mm (1:50). Eight pullout tests (24 hours after fluidization) were carried out on model piles installed by fluidization in sandy soil with a relative density of 50% and subjected to a surcharge of 2,236 kPa. Eighteen pullout tests were performed on pre-installed (non-fluidized) model piles in sand with a relative density of 30%, simulating an installation without soil disturbance, since this is the approximate relative density reached after the process of fluidization. The results were compared with previous studies of pullout resistance of fluidized piles in sand. For an average increase of 2 times the vertical effective stress in the model piles installed by fluidization with surcharge, an average increase of 1,8 times is observed in the pullout resistance. The lateral earth pressure coefficient on the pile shaft for these tests did not show significant differences in relation to the same type of test without surcharge. For tests installed by fluidization and pre-installed tests (without soil disturbance), remains constant and independent of the installed depths, with respective averages of 0,15 and 0,31. The value seems to increase with time for fluidized tests (setup effect) due to the reconstitution of the radial tensions. The values for pullout tests in driven model piles in dense sand decrease their value with the increase of the installed depth (and the increase of the vertical effective stress), by restriction of the expansive behavior, tending to the value found for pre-installed tests carried out in this work.
20

Análise do fenômeno de cavitação em bomba centrífuga

Coelho, Welington Ricardo [UNESP] 30 January 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-01-30Bitstream added on 2014-06-13T18:10:03Z : No. of bitstreams: 1 coelho_wr_dr_ilha_prot.pdf: 3240058 bytes, checksum: f2c138a1a2cb98ce4eb9f9618ea59484 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Cavitação em bombas centrífugas é a formação de bolhas de vapor do fluido bombeado na região de sucção do equipamento. As bolhas de vapor formadas em algum local do escoamento, em geral na região de sucção da bomba, entrarão posteriormente em colapso. Este fenômeno é importante cientificamente, tecnicamente e economicamente. Cientificamente é interessante, pois envolve o escoamento de um fluido em estado líquido, simultaneamente ocorre a formação de bolhas de vapor, que também escoam juntamente ao fluido líquido. O processo de vaporização e condensação de um fluido é complexo, pois envolve mudança de fase, um fenômeno térmico não linear. Tecnicamente, é importante porque quando o escoamento se dá com cavitação os parâmetros hidrodinâmicos do escoamento bem como da bomba, em geral, são fortemente alterados na direção termodinâmica de maior produção de irreversibilidades. Economicamente, é custoso porque a cavitação, em geral, leva a perda de eficiência termodinâmica dos processos e em conseqüência haverá maior custo na produção de um dado bem, diminuindo a eficiência econômica e a competitividade da empresa. O escoamento com cavitação na sucção de bombas apresenta três aspectos danosos principais: cavitação pulsante com baixa vazão; cavitação não pulsante com baixa altura útil; e erosão cavitacional. A cavitação pulsante é caracterizada por grande formação de bolhas de forma transitória com baixa freqüência e grande amplitude, gerando forças vibratórias importantes no sistema de bombeamento. A cavitação pulsante também causa colapso do fluxo de massa do fluido bombeado com valores que vão do fluxo normal da instalação até valores quase nulos, transitoriamente. Na cavitação pulsante a erosão cavitacional e a queda na altura útil são pequenas... / Cavitation in centrifugal pumps is the development of vapor bubbles from the pumped liquid into equipment suction region. Vapor bubbles developed somewhere in the flow, generally in the pump suction, will afterwards along the flow to collapse. This phenomenon is scientifically, technically and economically important. Scientifically, it is interesting because involves the flow of a fluid on liquid state, and simultaneously happens vapor bubbles development that also flow together the liquid fluid. Fluid vaporization and condensation processes are complex because involves phase change, a non-linear thermal phenomenon. Technically, it is important because when the flow happens with cavitation the flow and pump hydrodynamic parameters, generally, are strongly modified toward bigger thermodynamic irreversibility production. Economically, it is expensive because cavitation, generally, leads to thermodynamic process efficiency loss, and consequently it will have bigger costs for production of a given good, then decreasing economic efficiency and company competitiveness. Flow with cavitation in the pump suction presents three main devastating aspects: surging cavitation with low flow rate; steady cavitation with low total head; and cavitational erosion. Surging cavitation is characterized by unsteady, low frequency and high amplitude, intense bubbles development, producing strong vibration forces into the pumping system. Surging cavitation also causes the collapse of pumped fluid mass flow rate with values that goes from the normal flow to values that almost reach the zero flow, unsteadily. In surging cavitation, the cavitational erosion and the breakdown in total head are small. In steady cavitation the mass flow rate, and even the flow rate... (Complete abstract click electronic access below)

Page generated in 0.0684 seconds