• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an omni-directional weather-monitoring anemometer

Ramakrishnan, Vijay 16 December 2013 (has links)
This work presents the design, fabrication, calibration and testing of a pressure-based three-component anemometer capable of measuring accurate wind speeds in extreme weather conditions. The groundwork, at the outset, covers the development of a 12-hole omni-directional flow-velocity measurement probe capable of measuring flows up to 155° from the probe axis. The new 12-hole design is optimal in the sense that the calculation of the four unknown flow quantities, i.e., two flow angles, flow speed and static pressure, is achieved with the minimum necessary number of holes/ports on the probe tip. The fact that this design has 33% lesser number of holes compared to an earlier design, has significant implications in the instrument’s spatial resolution, frequency response as well as cost of interfacing and usage. A prototype 12-hole probe with a spherical tip diameter of 3/8 inches was fabricated and tested. Good flow prediction accuracy was obtained. Further groundwork on multi-hole probe technology was carried out, developing new methods for correcting and refining the calibration and reduction procedures. When calibrating multi-hole velocity probes in a wind-tunnel, offset (or bias) errors often exist in the recorded flow angles due to errors in aligning the traverse system exactly with the flow direction and due to the angularity of the tunnel flow itself. These offset angles are hard to quantify from direct measurements with any degree of accuracy. Although usually small (less than 0.5° in most good calibrations), these errors still need to be corrected to increase the flow measurement accuracy of the probe. In this work, a method is developed that computes offset errors in all types of multi-hole probes – from the traditional 5- and 7-hole probes to the omni-directional 18-hole probe and the nextgeneration 12-hole probe – using simply the pressure data obtained during their calibration. The algorithm doubled the measurement accuracy for most probes. Other issues related to post-processing of the pressure data from flow studies, when the multihole probe encountered unsteady and reversed flow conditions, were also examined. The design of the anemometer (herein called a Weatherprobe) builds on that of the 12- hole probe and is capable of measuring wind velocities up to ±45° to the horizontal plane and 360° around the horizontal plane. Due to the non-conventional arrangement of its pressure ports, newly developed calibration and data-reduction algorithms were used. The probe was calibrated and its measurement accuracy assessed in a calibration facility. All associated instrumentation was assembled from the ground up and ruggedized for harsh-weather applications. Field tests performed over many days next to a 3-D sonic anemometer showed good agreement in measured flow properties, thus validating the entire Weatherprobe system. This probe has widespread applications in weather monitoring, wind energy potential estimations and structural wind load evaluations.
2

Design and Calibration of Seven Hole Probes for Flow Measurement

CRAWFORD, Crawford, James 20 April 2011 (has links)
The calibration and use of seven hole pressure probes for hot flow measurement was studied extensively, and guidelines were developed for the calibration and use of these probes. The influence of tip shape, Reynolds number, calibration grid density, and curve fit were studied and reported. Calibration was done using the well established polynomial curve fit method of Gallington. An improvement to this method was proposed that improved the uniformity and magnitude of measurement error. A hemispherical tip was found to be less sensitive to manufacturing defects, and less sensitive to changes in tip Reynolds number than a conical tip. The response of the probes was found to be Reynolds number independent over a tip Reynolds number of 6000 for the entire calibrated range. For flows with an angle of attack less than approximately 20°, the response of the probe was found to be independent above Re = 3000. A minimum calibration grid density of 5° was recommended. Error in the measurement of high angle flows was found to increase significantly when the calibration grid was sparser than this. The response of the probe was found to contain features that were not properly represented by third order polynomial terms, and it was found that it was necessary to include fourth order terms in the polynomial curve fit. The uniformity of calibration error was found to improve significantly when the high angle sectors were calibrated using a small number of additional points from adjacent sectors. The calibration data sorting algorithm was modified to include a calibration point in a given sector if that sector’s port read the highest pressure, or if that port read within a specified tolerance (“overlap pressure”) of the highest pressure. An overlap pressure of 15-20% of the calibration flow dynamic pressure was found to decrease the maximum calibration errors by 10-15%. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-04-19 18:40:08.677
3

A comparative study of Cl⁻ transport across the roots of two grapevine rootstocks, K 51-40 and Paulsen, differing in salt tolerance.

Abbaspour, Nasser January 2008 (has links)
Soil salinity is one of the major abiotic stresses that decreases agricultural crop production through imposition of both ionic and osmotic stresses. The accumulation of Na⁺ and Cl⁻ in the cytosol to toxic levels inhibits metabolism. Unlike Na⁺, less is known about Cl⁻ uptake and transport in plants. Grapevine is moderately sensitive to salinity and accumulation of toxic levels of Cl⁻ in leaves is the major reason for salt-induced symptoms. In this study Cl⁻ uptake and transport mechanism(s) were investigated in two grapevine (Vitis sp.) rootstock hybrids differing in salt tolerance: 1103 Paulsen (salt tolerant) and K 51-40 (salt sensitive). Increased external salinity caused high Cl⁻ accumulation in shoots of the salt sensitive K 51-40 in comparison to Paulsen. Measurement of ¹ ⁵ NO₃⁻ net fluxes under high salinity showed that by increasing external Cl⁻ concentrations K 51-40 roots showed reduced NO₃⁻ accumulation. This was associated with increased accumulation of Cl⁻. In comparison to Paulsen, K 51-40 showed reduced NO₃⁻ / Cl⁻ root selectivity with increased salinity, but Paulsen had lower selectivity over the whole salinity range (0-45 mM). In order to examine if root hydraulic and permeability characterisations accounted for differences between varieties, the root pressure probe was used on excised roots. This showed that the osmotic Lpr was significantly smaller than hydrostatic Lpr, but no obvious difference was observed between the rootstocks. The reflection coefficient (σ) values (0.48-0.59) were the same for both rootstocks, and root anatomical studies showed no obvious difference in apoplastic barriers of the main and lateral roots. Comparing the uptake of Cl⁻ with an apoplastic tracer, PTS (3-hydroxy-5, 8, 10-pyrentrisulphonic acid), showed that there was no correlation between Cl⁻ and PTS transport. These results indicated that by-pass flow of salts to the xylem is the same for both rootstocks (10.01±3.03 % and 12.1±1.21 %) and hence pointed to differences in membrane transport to explain difference in Cl⁻ transport to the shoot. ³ ⁶Cl⁻ fluxes across plasma membrane and tonoplast of K 51-40 and Paulsen roots showed that ³ ⁶Cl⁻ influx in root segments of Paulsen was greater than K 51-40 over the first 10 minutes. Unidirectional influx within 10 min loading time showed increases with increases in the external concentrations in both rootstocks but Paulsen had higher influx rate when compared to K 51-40. This appeared to be due to a greater Vmax. There was no significant difference in Km. It was shown that ³ ⁶Cl⁻ accumulation and transport rate to the shoot of K 51-40 was higher than that of Paulsen. Compartmental analysis of ³ ⁶Cl⁻ efflux from intact roots confirmed that the difference in influx observed between the rootstocks was consistent with the results obtained for excised roots, although the values were not exactly the same. It was also shown that the main root of Paulsen had greater contribution to ³ ⁶Cl⁻ uptake than lateral roots. ³ ⁶Cl⁻ fluxes by lateral roots were not significantly different between the rootstocks. Cl⁻ and Na⁺ distribution patterns in different root cell types were determined using the X-ray microanalysis technique. It was shown that Cl⁻ content in the hypodermis and cortical cells was higher than the other cell types in both rootstocks, but overall Cl⁻ content in the root of Paulsen was higher than K 51-40. The pericycle of the main root of Paulsen accumulated more Cl⁻ than K 51-40. It was concluded that Cl⁻ loading to the xylem was different in the rootstocks and Paulsen tended to prevent the xylem Cl⁻ loading process. Lateral roots also displayed opposite behaviour consistent with flux analysis. Membrane potential difference (PD) of the cortical cells showed a rapid and transient depolarization by adding 30 mM NaCl in both rootstocks that was followed by a gradual hyperpolarization. Depolarizations caused by 30 mM Choline-Cl, Na-MES and NaCl measured by the root surface potential method showed that Choline-Cl in K 51-40 and Na-MES in Paulsen caused greater depolarization than that of Na-MES in K 51-40 and Choline-Cl in Paulsen respectively. Assuming that PD measured in this method was the trans-root potential (TRP), it was concluded that the higher depolarization by Choline-Cl in K 51-40 can be due to higher Cl⁻ efflux rate to the xylem. Two different mechanisms were also detected for Cl⁻ transport: HATS which was observed in the range of 0.5-5 mM and a LATS in the range of 10-30 mM of the external NaCl concentration. This was consistent with the concentration dependence of Cl⁻ influx. In conclusion, evidence obtained from different experiments of this study indicated that in the grapevine rootstocks (Paulsen and K 51-40) Cl⁻ was mostly transported through the symplastic pathway. From ECl values determined for the rootstocks by the Nernst equation, a proton-driven transport system was responsible for Cl⁻ transport in both the HATS and LATS range of external NaCl concentrations. The rate of Cl⁻ transport from the root to shoot (xylem loading) was the major difference in Cl⁻ transport between the rootstocks in terms of salinity tolerance. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339051 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008
4

A comparative study of Cl⁻ transport across the roots of two grapevine rootstocks, K 51-40 and Paulsen, differing in salt tolerance.

Abbaspour, Nasser January 2008 (has links)
Soil salinity is one of the major abiotic stresses that decreases agricultural crop production through imposition of both ionic and osmotic stresses. The accumulation of Na⁺ and Cl⁻ in the cytosol to toxic levels inhibits metabolism. Unlike Na⁺, less is known about Cl⁻ uptake and transport in plants. Grapevine is moderately sensitive to salinity and accumulation of toxic levels of Cl⁻ in leaves is the major reason for salt-induced symptoms. In this study Cl⁻ uptake and transport mechanism(s) were investigated in two grapevine (Vitis sp.) rootstock hybrids differing in salt tolerance: 1103 Paulsen (salt tolerant) and K 51-40 (salt sensitive). Increased external salinity caused high Cl⁻ accumulation in shoots of the salt sensitive K 51-40 in comparison to Paulsen. Measurement of ¹ ⁵ NO₃⁻ net fluxes under high salinity showed that by increasing external Cl⁻ concentrations K 51-40 roots showed reduced NO₃⁻ accumulation. This was associated with increased accumulation of Cl⁻. In comparison to Paulsen, K 51-40 showed reduced NO₃⁻ / Cl⁻ root selectivity with increased salinity, but Paulsen had lower selectivity over the whole salinity range (0-45 mM). In order to examine if root hydraulic and permeability characterisations accounted for differences between varieties, the root pressure probe was used on excised roots. This showed that the osmotic Lpr was significantly smaller than hydrostatic Lpr, but no obvious difference was observed between the rootstocks. The reflection coefficient (σ) values (0.48-0.59) were the same for both rootstocks, and root anatomical studies showed no obvious difference in apoplastic barriers of the main and lateral roots. Comparing the uptake of Cl⁻ with an apoplastic tracer, PTS (3-hydroxy-5, 8, 10-pyrentrisulphonic acid), showed that there was no correlation between Cl⁻ and PTS transport. These results indicated that by-pass flow of salts to the xylem is the same for both rootstocks (10.01±3.03 % and 12.1±1.21 %) and hence pointed to differences in membrane transport to explain difference in Cl⁻ transport to the shoot. ³ ⁶Cl⁻ fluxes across plasma membrane and tonoplast of K 51-40 and Paulsen roots showed that ³ ⁶Cl⁻ influx in root segments of Paulsen was greater than K 51-40 over the first 10 minutes. Unidirectional influx within 10 min loading time showed increases with increases in the external concentrations in both rootstocks but Paulsen had higher influx rate when compared to K 51-40. This appeared to be due to a greater Vmax. There was no significant difference in Km. It was shown that ³ ⁶Cl⁻ accumulation and transport rate to the shoot of K 51-40 was higher than that of Paulsen. Compartmental analysis of ³ ⁶Cl⁻ efflux from intact roots confirmed that the difference in influx observed between the rootstocks was consistent with the results obtained for excised roots, although the values were not exactly the same. It was also shown that the main root of Paulsen had greater contribution to ³ ⁶Cl⁻ uptake than lateral roots. ³ ⁶Cl⁻ fluxes by lateral roots were not significantly different between the rootstocks. Cl⁻ and Na⁺ distribution patterns in different root cell types were determined using the X-ray microanalysis technique. It was shown that Cl⁻ content in the hypodermis and cortical cells was higher than the other cell types in both rootstocks, but overall Cl⁻ content in the root of Paulsen was higher than K 51-40. The pericycle of the main root of Paulsen accumulated more Cl⁻ than K 51-40. It was concluded that Cl⁻ loading to the xylem was different in the rootstocks and Paulsen tended to prevent the xylem Cl⁻ loading process. Lateral roots also displayed opposite behaviour consistent with flux analysis. Membrane potential difference (PD) of the cortical cells showed a rapid and transient depolarization by adding 30 mM NaCl in both rootstocks that was followed by a gradual hyperpolarization. Depolarizations caused by 30 mM Choline-Cl, Na-MES and NaCl measured by the root surface potential method showed that Choline-Cl in K 51-40 and Na-MES in Paulsen caused greater depolarization than that of Na-MES in K 51-40 and Choline-Cl in Paulsen respectively. Assuming that PD measured in this method was the trans-root potential (TRP), it was concluded that the higher depolarization by Choline-Cl in K 51-40 can be due to higher Cl⁻ efflux rate to the xylem. Two different mechanisms were also detected for Cl⁻ transport: HATS which was observed in the range of 0.5-5 mM and a LATS in the range of 10-30 mM of the external NaCl concentration. This was consistent with the concentration dependence of Cl⁻ influx. In conclusion, evidence obtained from different experiments of this study indicated that in the grapevine rootstocks (Paulsen and K 51-40) Cl⁻ was mostly transported through the symplastic pathway. From ECl values determined for the rootstocks by the Nernst equation, a proton-driven transport system was responsible for Cl⁻ transport in both the HATS and LATS range of external NaCl concentrations. The rate of Cl⁻ transport from the root to shoot (xylem loading) was the major difference in Cl⁻ transport between the rootstocks in terms of salinity tolerance. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339051 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008
5

Měření na turbínové mříži / Measurements on Turbine Cascade

Vondra, Marek January 2015 (has links)
The Aim of this Diploma thesis is the measurement on turbine cascade. The first part is focused on measurement of the flow characteristics of the turbine cascade using a three–hole pressure probe. The second part includes the blade profile pressure measurement. Both measurements are performed both experimentally and by computer simulation in Ansys and the results are compared. Part of the work is also file containining the computer simulation, which was carried out in CFX program.
6

Mécanique du mouvement rapide de la plante carnivore Dionée : mesures élasto-hydrodynamiques à l'échelle de la cellule et du tissu - conséquences pour le mécanisme de fermeture / Mechanics of rapid motion in the Venus Flytrap

Colombani, Mathieu 22 July 2013 (has links)
Bien qu’elles ne disposent pas de muscles, les plantes ont réussi à développer un nombre remarquable de mécanismes permettant de créer des mouvements rapides, du repliement rapide des feuilles de mimosa pudica à la dispersion de graines par explosion. Parmi ces exemples spectaculaires qui ont depuis longtemps fasciné les scientifiques, la plante carnivore dionée, dont les feuilles se referment en une fraction de secondes pour capturer des insectes, fait figure de paradigme. Récemment, nous avons montré que ce mouvement met en jeu une instabilité de flambage élastique, due à la forme de coque mince des feuilles du piège. Cependant, l’origine microscopique du mouvement qui permet à la plante de franchir le seuil d’instabilité et de changer activement sa courbure reste méconnue. Dans cette thèse nous étudions ce mouvement actif en utilisant un dispositif micro-fluidique, la sonde de pression, qui donne accès directement aux paramètres élastiques et hydrodynamiques à l’échelle de la cellule (pression osmotique, perméabilité cellulaire, élasticité de la paroi, ...). Nos résultats remettent en question le rôle des flux d’eau d’origine osmotique souvent mis en avant pour expliquer la fermeture active du piège de la dionée. De plus, nous développons un dispositif de micro indentation original utilisant un rhéomètre, pour mesurer la réponse locale des tissus et les propriétés mécaniques des épidermes interne et externe. Nous mesurons une signature claire du mouvement actif de la dionée, et fournissons ainsi de nouveaux arguments pour discuter le mécanisme de fermeture, et plus généralement les mouvements rapides dans les plantes. / Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap’s active closure. Moreover, we developp a micro-indentation original setup using a rheometer, to measure the local tissue response and mechanical properties of the lower and upper epidermis. Then, we detect a clear signature of the active movement in the Venus Flytrap, and thus provide new arguments to discuss this mechanism, and more generally the movements in plants.
7

CPT-sondering och trycksondering, en jämförande studie om utvärdering av friktionsvinkel i friktionsjord

Bolinder, Adam January 2017 (has links)
Knowledge of the soils friction angle is necessary to avoid landslides at slope stability surveys and dimensioning for foundation of different constructions. Frictional forces mainly builds up friction soil and the friction angle is defined by the angle when landslides occur. Friction angle can be evaluated using CPT or pressure probe. Both methods are performed similarly, with constant pressure and sink rate, but differ in time, cost, competence requirements and number of measurable parameters. The methods also differ when evaluating the friction angle. For CPT, the Conrad software is used while pressure probe is evaluated with empirical values, set against the peak pressure. This degree project compares the results from performed and evaluated CPT and pressure probes from several drill points in a project. The purpose of the study is to draw conclusions about the soils friction angle, whether the empirically evaluated values of the friction angle by pressure probing, can be correlated with the values of the friction angle through CPT, evaluated with the Conrad software. Both CPT and the evaluation with Conrad are more advanced methods and are therefore seen as the correct value for the soils friction angle. The result shows that pressure probe provides a good indication when evaluating the friction angle and can be used, with the knowledge that the friction angle is rarely evaluated higher than from CPT. The methods differ the most towards the surface to almost correlate towards the depth. / Kunskap om jordens friktionsvinkel är nödvändig vid bland annat släntstabilitetsutredning samt dimensionering för grundläggning av byggnader och anläggning. Friktionsjord byggs huvudsakligen upp av friktionskrafter och friktionsvinkeln definieras av vinkeln då ras uppstår. Friktionsvinkeln kan bland annat utvärderas med hjälp av resultat från CPT eller trycksondering. Båda metoderna utförs på liknande sätt, med konstant tryck och sjunkningshastighet men skiljer sig i tidsåtgång, kostnad, kompetenskrav samt antal mätbara parametrar. Metoderna skiljer sig också vid utvärdering av friktionsvinkel. För CPT används programvaran Conrad medan trycksondering utvärderas med empiriskt framtagna värden, ställda mot spetstrycket. Detta examensarbete jämför resultaten från utförda och utvärderade CPT resp. trycksonderingar från ett flertal borrpunkter i ett projekt. Syftet med studien är att dra slutsatser om jordens friktionsvinkel, huruvida de empiskt utvärderade värden för friktionsvinkeln genom trycksondering kan korreleras med värden för friktionsvinkeln genom CPT, utvärderande med programvaran Conrad. Både CPT-sondering och utvärdering med Conrad är avancerade metoder och ses därför som det mer korrekta värdet för jordens friktionsvinkel. Resultatet visar att trycksondering ger en bra indikation vid utvärdering av friktionsvinkel och kan användas, med vetskapen att friktionsvinkeln sällan utvärderas högre än från CPT. Skillnaden vid utvärdering är som störst nära markytan och minskar för att nära på korrelera mot djupet.
8

An Experimental Study of Turbulent Boundary Layers Subjected to High Free-stream Turbulence Effects

Orsi Filho, Edgar 06 January 2006 (has links)
The work presented in this thesis was on nominally two-dimensional turbulent boundary layers at zero pressure gradient subjected to high free-stream turbulent intensities of up to 7.9% in preparations for high free-stream turbulence studies on three-dimensional boundary layers, which will be done in the future in the Aerospace and Ocean Engineering Boundary Layer Wind Tunnel at Virginia Tech. The two-dimensional turbulent flow that will impinge three-dimensional bodies needed to be characterized, before the three-dimensional studies can be made. An active turbulence generator designed to create high free-stream turbulence intensities in the wind tunnel was tested and modified in order to obtain the lowest possible mean flow non-uniformities. A seven-hole pressure probe was used to obtain planes of mean velocity measurements. A three-component state of the art laser-Doppler velocimeter (LDV) was used to obtain mean and fluctuating velocities. Previous high free-stream turbulence studies have been reviewed and are discussed, and some of the previously published data of other authors have been corrected. Based on the measurements obtained with the LDV, it was also determined that the semi-log law of the wall is valid for high free-stream turbulence cases, but with different constants than the ones proposed by Coles, where the constants for the high free-stream cases may be dependent on the turbulence intensity. For the first time, the skin friction coefficient (Cf) was deduced from the viscous sublayer. The difference between the U_tau obtained in the viscous sublayer mean velocity profile and the U_tau obtained in the semi-log layer was 1.5%. The skin friction coefficient was determined to increase by 10.5% when the two-dimensional turbulent boundary layer was subjected to high free-stream turbulence effects. Spectral data obtained with the LDV, were compared to the von Kármán model spectrum and to the Pope's model spectrum, where the von Kármán spectrum was proven to fit the spectral data slightly better than the Pope's spectrum. Finally, the Hancock-Bradshaw-Blair parameter obtained for this experiment agreed very well with previously published data. / Master of Science
9

Investigation of thrust mechanisms in a water fed pulsed plasma thruster

Scharlemann, Carsten A. January 2003 (has links)
No description available.
10

Vehicle engine cooling systems: assessment and improvement of wind-tunnel based evaluation methods

Ng, Eton Yat-Tuen, eton_ng@hotmail.com January 2002 (has links)
The high complexity of vehicle front-end design, arising from considerations of aerodynamics, safety and styling, causes the airflow velocity profile at the radiator face to be highly distorted, leading to potentially reduced airflow volume for heat dissipation. A flow visualisation study showed that the bumper bar significantly influenced the cooling airflow, leading to three-dimensional vortices in its wake and generating an area of relatively low velocity across at least one third of the radiator core. Since repeatability and accuracy of on-road testing are prejudiced by weather conditions, wind-tunnel testing is often preferred to solve cooling airflow problems. However, there are constraints that limit the accuracy of reproducing on-road cooling performance from wind-tunnel simulations. These constraints included inability to simulate atmospheric conditions, limited tunnel test section sizes (blockage effects) and lack of ground effect simulations. The work presented in this thesis involved use of on-road and wind-tunnel tests to investigate the effects of most common constraints present in wind tunnels on accuracy of the simulations of engine cooling performance and radiator airflow profiles. To aid this investigation, an experimental technique for quantifying radiator airflow velocity distribution and an analytical model for predicting the heat dissipation rate of a radiator were developed. A four-hole dynamic pressure probe (TFI Cobra probe) was also used to document flow fields in proximity to a section of radiator core in a wind tunnel in order to investigate the effect of airflow maldistribution on radiator heat-transfer performance. In order to cope with the inability to simulate ambient temperature, the technique of Specific Dissipation (SD) was used, which had previously been shown to overcome this problem.

Page generated in 0.0893 seconds