• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of test procedures for controlling the quality of the manufacture of engineered compression stockings

Moghaddassian Shahidi, Arash January 2010 (has links)
A new technology platform known as 'Scan2Knit' was invented in the William Lee innovation Centre of the University of Manchester to engineer and manufacture compression stockings for the treatment of venous disease in a Welcome Trust funded research project. The intellectual property of the above technology has been licensed for commercial exploitation by the University.The graduated pressure profile that is necessary for the treatment of venous ulcers is generated with the engineered compression stocking, and will depend on the stitch length of the knitted fabric structure and an empirical pressure profile database. The 'Scan2Knit' technology was developed to produce an engineered compression stocking on a 18 gauge Stoll CMS computerised flat-bed knitting machine utilising a microprocessor controlled precision positive yarn delivery system to guarantee the delivery of a predetermined stitch length to the knitting needles. However, the licensee of the technology has decided to manufacture engineered compressions stockings by using 14 gauge Stoll CMS flat-bed knitting machines instead of gauge 18 machines due to commercial advantages. Therefore, the main aim of this work is to investigate the transfer of 'Scan2Knit' technology on to a coarse gauge manufacturing platform to produce engineered compression stockings. The investigation focuses on two vital requirements of 'Scan2Knit' technology; the analysis of the performance of the precision positive yarn delivery system on the new production platform and the evaluation of the functionality of the knitted structure produced with it. The objectives of the research are to develop test procedures for the evaluation of the three dimensional pressure characteristic of compression stockings manufactured on the new production platform, and the performance of the precision yarn delivery system. To produce the engineered compression stockings with the 'Scan2Knit' technology, it is essential to determine the interface pressure that the knitted structure would impart on a particular radius of curvature at a predetermined strain percentage which is attained with an empirical database. Hence, a key objective of this study is to develop a methodology, which is efficient and user friendly, for the generation of the empirical pressure profile database required to engineer the interface pressure profile of a compression stocking.It is envisioned that the manufacturer of the engineered compression stockings would benefit by the knowledge generated within this research, and develop their own quality assurance procedures to guarantee that the compression stockings are produced to deliver the graduated pressure profile prescribed by the clinician for the treatment of venous ulcers.
2

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Ronchi, Gilson 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.
3

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Gilson Ronchi 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.
4

Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application

Chock, Jeffrey Mun Kong 04 May 1999 (has links)
Blast profiles and two primary methods of determining them were reviewed for use in the creation of a computer program for calculating blast pressures which serves as a design tool to aid engineers or analysts in the study of structures subjected to explosive air blast. These methods were integrated into a computer program, BLAST.F, to generate air blast pressure profiles by one of these two differing methods. These two methods were compared after the creation of the program and can conservatively model the effects of spherical air blast and hemispherical surface burst. The code, BLAST.F, was used in conjunction with a commercial finite element code (NASTRAN) in a demonstration of method on a 30 by 30 inch aluminum 2519 quarter plate of fixed boundary conditions in hemispherical ground burst and showed good convergence with 256 elements for deflection and good agreement in equivalent stresses of a point near the blast between the 256 and 1024 element examples. Application of blasts to a hypothetical wing comprised of aluminum 7075-T6 was also conducted showing good versatility of method for using this program with other finite element models. / Master of Science
5

Investigations into Pressure Profile and Pressure Control in Wrist-Worn Health Monitoring Devices

Black, Roger McAllister 02 August 2022 (has links) (PDF)
To aid in the design of future wearable health devices (WHDs), contact pressure between the distal forearm (wrist) and two different wrist-worn devices was investigated in this work. The first device included eight force sensors arranged in series along the length of a wristband to measure the pressure profile. The band also included a tensioner device for manually tightening the band while on a wrist. Testing was done on dummy wrists and the results were statistically significant supporting the hypothesis that areas of the wrist with lower radius of curvature will experience higher contact pressures generally and a faster rate of change in pressure as the band is tightened. The second band included a controller, actuator, and force sensors for actively controlling the contact pressure of a photoplethysmography (PPG) sensor on the wrist during user motion. A total of eight tests were performed on six human subjects to estimate previously unknown design parameters related to contact pressure control of a wrist-worn device. Participants were asked to perform several actions including tapping their finger at different rates, tossing a ball, wrist flexion and extension, and making a fist. The design parameters investigated were system stiffness, range in contact pressure caused by motion, range of motion in the radial direction required to maintain a desired pressure, arterial pulse pressure amplitude and its relation to pressure tolerance, and system response time required to maintain a constant pressure. System stiffness was observed to be greater during motion (dynamic) than during rest (static) and to increase with increasing contact pressure. The change in contact pressure caused by motion was around 18 kPa in some cases and the maximum range of motion to maintain a contact pressure was about 7 mm. The arterial pulse pressure amplitude ranged between 0.05 to 0.3 kPa. It was estimated that a maximum sensor platform speed of 30 mm/s or greater is required to maintain a constant contact pressure during large motion actions such as flexing the wrist up and down. Finally, no significant differences were observed in the PPG signal between states in which the contact pressure was controlled vs. not controlled.
6

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.
7

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.
8

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.

Page generated in 0.0882 seconds