• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes primales-duales régularisées pour l'optimisation non linéaire avec contraintes / Regularized primal-dual methods for nonlinearly constrained optimization

Omheni, Riadh 14 November 2014 (has links)
Cette thèse s’inscrit dans le cadre de la conception, l’analyse et la mise en œuvre d’algorithmes efficaces et fiables pour la résolution de problèmes d’optimisation non linéaire avec contraintes. Nous présentons trois nouveaux algorithmes fortement primaux-duaux pour résoudre ces problèmes. La première caractéristique de ces algorithmes est que le contrôle des itérés s’effectue dans l’espace primal-dual tout au long du processus de la minimisation, d’où l’appellation “fortement primaux-duaux”. En particulier, la globalisation est effectuée par une méthode de recherche linéaire qui utilise une fonction de mérite primale-duale. La deuxième caractéristique est l’introduction d’une régularisation naturelle du système linéaire qui est résolu à chaque itération pour calculer une direction de descente. Ceci permet à nos algorithmes de bien se comporter pour résoudre les problèmes dégénérés pour lesquels la jacobienne des contraintes n’est pas de plein rang. La troisième caractéristique est que le paramètre de pénalisation est autorisé à augmenter au cours des itérations internes, alors qu’il est généralement maintenu constant. Cela permet de réduire le nombre d’itérations internes. Une étude théorique détaillée incluant l’analyse de convergence globale des itérations internes et externes, ainsi qu’une analyse asymptotique a été présentée pour chaque algorithme. En particulier, nous montrons qu’ils jouissent d’un taux de convergence rapide, superlinéaire ou quadratique. Ces algorithmes sont implémentés dans un nouveau solveur d’optimisation non linéaire qui est appelé SPDOPT. Les bonnes performances de ce solveur ont été montrées en effectuant des comparaisons avec les codes de références IPOPT, ALGENCAN et LANCELOT sur une large collection de problèmes. / This thesis focuses on the design, analysis, and implementation of efficient and reliable algorithms for solving nonlinearly constrained optimization problems. We present three new strongly primal-dual algorithms to solve such problems. The first feature of these algorithms is that the control of the iterates is done in both primal and dual spaces during the whole minimization process, hence the name “strongly primal-dual”. In particular, the globalization is performed by applying a backtracking line search algorithm based on a primal-dual merit function. The second feature is the introduction of a natural regularization of the linear system solved at each iteration to compute a descent direction. This allows our algorithms to perform well when solving degenerate problems for which the Jacobian of constraints is rank deficient. The third feature is that the penalty parameter is allowed to increase along the inner iterations, while it is usually kept constant. This allows to reduce the number of inner iterations. A detailed theoretical study including the global convergence analysis of both inner and outer iterations, as well as an asymptotic convergence analysis is presented for each algorithm. In particular, we prove that these methods have a high rate of convergence : superlinear or quadratic. These algorithms have been implemented in a new solver for nonlinear optimization which is called SPDOPT. The good practical performances of this solver have been demonstrated by comparing it to the reference codes IPOPT, ALGENCAN and LANCELOT on a large collection of test problems.
2

Algorithmes d'optimisation en grande dimension : applications à la résolution de problèmes inverses / Large scale optimization algorithms : applications to solution of inverse problems

Repetti, Audrey 29 June 2015 (has links)
Une approche efficace pour la résolution de problèmes inverses consiste à définir le signal (ou l'image) recherché(e) par minimisation d'un critère pénalisé. Ce dernier s'écrit souvent sous la forme d'une somme de fonctions composées avec des opérateurs linéaires. En pratique, ces fonctions peuvent n'être ni convexes ni différentiables. De plus, les problèmes auxquels on doit faire face sont souvent de grande dimension. L'objectif de cette thèse est de concevoir de nouvelles méthodes pour résoudre de tels problèmes de minimisation, tout en accordant une attention particulière aux coûts de calculs ainsi qu'aux résultats théoriques de convergence. Une première idée pour construire des algorithmes rapides d'optimisation est d'employer une stratégie de préconditionnement, la métrique sous-jacente étant adaptée à chaque itération. Nous appliquons cette technique à l'algorithme explicite-implicite et proposons une méthode, fondée sur le principe de majoration-minimisation, afin de choisir automatiquement les matrices de préconditionnement. L'analyse de la convergence de cet algorithme repose sur l'inégalité de Kurdyka-L ojasiewicz. Une seconde stratégie consiste à découper les données traitées en différents blocs de dimension réduite. Cette approche nous permet de contrôler à la fois le nombre d'opérations s'effectuant à chaque itération de l'algorithme, ainsi que les besoins en mémoire, lors de son implémentation. Nous proposons ainsi des méthodes alternées par bloc dans les contextes de l'optimisation non convexe et convexe. Dans le cadre non convexe, une version alternée par bloc de l'algorithme explicite-implicite préconditionné est proposée. Les blocs sont alors mis à jour suivant une règle déterministe acyclique. Lorsque des hypothèses supplémentaires de convexité peuvent être faites, nous obtenons divers algorithmes proximaux primaux-duaux alternés, permettant l'usage d'une règle aléatoire arbitraire de balayage des blocs. L'analyse théorique de ces algorithmes stochastiques d'optimisation convexe se base sur la théorie des opérateurs monotones. Un élément clé permettant de résoudre des problèmes d'optimisation de grande dimension réside dans la possibilité de mettre en oeuvre en parallèle certaines étapes de calculs. Cette parallélisation est possible pour les algorithmes proximaux primaux-duaux alternés par bloc que nous proposons: les variables primales, ainsi que celles duales, peuvent être mises à jour en parallèle, de manière tout à fait flexible. A partir de ces résultats, nous déduisons de nouvelles méthodes distribuées, où les calculs sont répartis sur différents agents communiquant entre eux suivant une topologie d'hypergraphe. Finalement, nos contributions méthodologiques sont validées sur différentes applications en traitement du signal et des images. Nous nous intéressons dans un premier temps à divers problèmes d'optimisation faisant intervenir des critères non convexes, en particulier en restauration d'images lorsque l'image originale est dégradée par un bruit gaussien dépendant du signal, en démélange spectral, en reconstruction de phase en tomographie, et en déconvolution aveugle pour la reconstruction de signaux sismiques parcimonieux. Puis, dans un second temps, nous abordons des problèmes convexes intervenant dans la reconstruction de maillages 3D et dans l'optimisation de requêtes pour la gestion de bases de données / An efficient approach for solving an inverse problem is to define the recovered signal/image as a minimizer of a penalized criterion which is often split in a sum of simpler functions composed with linear operators. In the situations of practical interest, these functions may be neither convex nor smooth. In addition, large scale optimization problems often have to be faced. This thesis is devoted to the design of new methods to solve such difficult minimization problems, while paying attention to computational issues and theoretical convergence properties. A first idea to build fast minimization algorithms is to make use of a preconditioning strategy by adapting, at each iteration, the underlying metric. We incorporate this technique in the forward-backward algorithm and provide an automatic method for choosing the preconditioning matrices, based on a majorization-minimization principle. The convergence proofs rely on the Kurdyka-L ojasiewicz inequality. A second strategy consists of splitting the involved data in different blocks of reduced dimension. This approach allows us to control the number of operations performed at each iteration of the algorithms, as well as the required memory. For this purpose, block alternating methods are developed in the context of both non-convex and convex optimization problems. In the non-convex case, a block alternating version of the preconditioned forward-backward algorithm is proposed, where the blocks are updated according to an acyclic deterministic rule. When additional convexity assumptions can be made, various alternating proximal primal-dual algorithms are obtained by using an arbitrary random sweeping rule. The theoretical analysis of these stochastic convex optimization algorithms is grounded on the theory of monotone operators. A key ingredient in the solution of high dimensional optimization problems lies in the possibility of performing some of the computation steps in a parallel manner. This parallelization is made possible in the proposed block alternating primal-dual methods where the primal variables, as well as the dual ones, can be updated in a quite flexible way. As an offspring of these results, new distributed algorithms are derived, where the computations are spread over a set of agents connected through a general hyper graph topology. Finally, our methodological contributions are validated on a number of applications in signal and image processing. First, we focus on optimization problems involving non-convex criteria, in particular image restoration when the original image is corrupted with a signal dependent Gaussian noise, spectral unmixing, phase reconstruction in tomography, and blind deconvolution in seismic sparse signal reconstruction. Then, we address convex minimization problems arising in the context of 3D mesh denoising and in query optimization for database management
3

Infeasibility detection and regularization strategies in nonlinear optimization / Détection de la non-réalisabilité et stratégies de régularisation en optimisation non linéaire

Tran, Ngoc Nguyen 26 October 2018 (has links)
Dans cette thèse, nous nous étudions des algorithmes d’optimisation non linéaire. D’une part nous proposons des techniques de détection rapide de la non-réalisabilité d’un problème à résoudre. D’autre part, nous analysons le comportement local des algorithmes pour la résolution de problèmes singuliers. Dans la première partie, nous présentons une modification d’un algorithme de lagrangien augmenté pour l’optimisation avec contraintes d’égalité. La convergence quadratique du nouvel algorithme dans le cas non-réalisable est démontrée théoriquement et numériquement. La seconde partie est dédiée à l’extension du résultat précédent aux problèmes d’optimisation non linéaire généraux avec contraintes d’égalité et d’inégalité. Nous proposons une modification d’un algorithme de pénalisation mixte basé sur un lagrangien augmenté et une barrière logarithmique. Les résultats théoriques de l’analyse de convergence et quelques tests numériques montrent l’avantage du nouvel algorithme dans la détection de la non-réalisabilité. La troisième partie est consacrée à étudier le comportement local d’un algorithme primal-dual de points intérieurs pour l’optimisation sous contraintes de borne. L’analyse locale est effectuée sans l’hypothèse classique des conditions suffisantes d’optimalité de second ordre. Celle-ci est remplacée par une hypothèse plus faible basée sur la notion de borne d’erreur locale. Nous proposons une technique de régularisation de la jacobienne du système d’optimalité à résoudre. Nous démontrons ensuite des propriétés de bornitude de l’inverse de ces matrices régularisées, ce qui nous permet de montrer la convergence superlinéaire de l’algorithme. La dernière partie est consacrée à l’analyse de convergence locale de l’algorithme primal-dual qui est utilisé dans les deux premières parties de la thèse. En pratique, il a été observé que cet algorithme converge rapidement même dans le cas où les contraintes ne vérifient l’hypothèse de qualification de Mangasarian-Fromovitz. Nous démontrons la convergence superlinéaire et quadratique de cet algorithme, sans hypothèse de qualification des contraintes. / This thesis is devoted to the study of numerical algorithms for nonlinear optimization. On the one hand, we propose new strategies for the rapid infeasibility detection. On the other hand, we analyze the local behavior of primal-dual algorithms for the solution of singular problems. In the first part, we present a modification of an augmented Lagrangian algorithm for equality constrained optimization. The quadratic convergence of the new algorithm in the infeasible case is theoretically and numerically demonstrated. The second part is dedicated to extending the previous result to the solution of general nonlinear optimization problems with equality and inequality constraints. We propose a modification of a mixed logarithmic barrier-augmented Lagrangian algorithm. The theoretical convergence results and the numerical experiments show the advantage of the new algorithm for the infeasibility detection. In the third part, we study the local behavior of a primal-dual interior point algorithm for bound constrained optimization. The local analysis is done without the standard assumption of the second-order sufficient optimality conditions. These conditions are replaced by a weaker assumption based on a local error bound condition. We propose a regularization technique of the Jacobian matrix of the optimality system. We then demonstrate some boundedness properties of the inverse of these regularized matrices, which allow us to prove the superlinear convergence of our algorithm. The last part is devoted to the local convergence analysis of the primal-dual algorithm used in the first two parts of this thesis. In practice, it has been observed that this algorithm converges rapidly even in the case where the constraints do not satisfy the Mangasarian-Fromovitz constraint qualification. We demonstrate the superlinear and quadratic convergence of this algorithm without any assumption of constraint qualification.
4

Decentralized Algorithms for Wasserstein Barycenters

Dvinskikh, Darina 29 October 2021 (has links)
In dieser Arbeit beschäftigen wir uns mit dem Wasserstein Baryzentrumproblem diskreter Wahrscheinlichkeitsmaße sowie mit dem population Wasserstein Baryzentrumproblem gegeben von a Fréchet Mittelwerts von der rechnerischen und statistischen Seiten. Der statistische Fokus liegt auf der Schätzung der Stichprobengröße von Maßen zur Berechnung einer Annäherung des Fréchet Mittelwerts (Baryzentrum) der Wahrscheinlichkeitsmaße mit einer bestimmten Genauigkeit. Für empirische Risikominimierung (ERM) wird auch die Frage der Regularisierung untersucht zusammen mit dem Vorschlag einer neuen Regularisierung, die zu den besseren Komplexitätsgrenzen im Vergleich zur quadratischen Regularisierung beiträgt. Der Rechenfokus liegt auf der Entwicklung von dezentralen Algorithmen zurBerechnung von Wasserstein Baryzentrum: duale Algorithmen und Sattelpunktalgorithmen. Die Motivation für duale Optimierungsmethoden ist geschlossene Formen für die duale Formulierung von entropie-regulierten Wasserstein Distanz und ihren Derivaten, während, die primale Formulierung nur in einigen Fällen einen Ausdruck in geschlossener Form hat, z.B. für Gaußsches Maß. Außerdem kann das duale Orakel, das den Gradienten der dualen Darstellung für die entropie-regulierte Wasserstein Distanz zurückgibt, zu einem günstigeren Preis berechnet werden als das primale Orakel, das den Gradienten der (entropie-regulierten) Wasserstein Distanz zurückgibt. Die Anzahl der dualen Orakel rufe ist in diesem Fall ebenfalls weniger, nämlich die Quadratwurzel der Anzahl der primalen Orakelrufe. Im Gegensatz zum primalen Zielfunktion, hat das duale Zielfunktion Lipschitz-stetig Gradient aufgrund der starken Konvexität regulierter Wasserstein Distanz. Außerdem untersuchen wir die Sattelpunktformulierung des (nicht regulierten) Wasserstein Baryzentrum, die zum Bilinearsattelpunktproblem führt. Dieser Ansatz ermöglicht es uns auch, optimale Komplexitätsgrenzen zu erhalten, und kann einfach in einer dezentralen Weise präsentiert werden. / In this thesis, we consider the Wasserstein barycenter problem of discrete probability measures as well as the population Wasserstein barycenter problem given by a Fréchet mean from computational and statistical sides. The statistical focus is estimating the sample size of measures needed to calculate an approximation of a Fréchet mean (barycenter) of probability distributions with a given precision. For empirical risk minimization approaches, the question of the regularization is also studied along with proposing a new regularization which contributes to the better complexity bounds in comparison with the quadratic regularization. The computational focus is developing decentralized algorithms for calculating Wasserstein barycenters: dual algorithms and saddle point algorithms. The motivation for dual approaches is closed-forms for the dual formulation of entropy-regularized Wasserstein distances and their derivatives, whereas the primal formulation has a closed-form expression only in some cases, e.g., for Gaussian measures.Moreover, the dual oracle returning the gradient of the dual representation forentropy-regularized Wasserstein distance can be computed for a cheaper price in comparison with the primal oracle returning the gradient of the (entropy-regularized) Wasserstein distance. The number of dual oracle calls in this case will be also less, i.e., the square root of the number of primal oracle calls. Furthermore, in contrast to the primal objective, the dual objective has Lipschitz continuous gradient due to the strong convexity of regularized Wasserstein distances. Moreover, we study saddle-point formulation of the non-regularized Wasserstein barycenter problem which leads to the bilinear saddle-point problem. This approach also allows us to get optimal complexity bounds and it can be easily presented in a decentralized setup.

Page generated in 0.0742 seconds