Spelling suggestions: "subject:"price dde vue"" "subject:"price dee vue""
1 |
Filtrage de segments informatifs dans des vidéosGuilmart, Christophe 20 December 2011 (has links) (PDF)
Les travaux réalisés dans le cadre de cette thèse ont pour objectif d'extraire les différents segments informatifs au sein de séquences vidéo, plus particulièrement aériennes. L'interprétation manuelle de telles vidéos dans une optique de renseignement se heurte en effet au volume des données disponibles. Une assistance algorithmique fondée sur diverses modalités d'indexation est donc envisagée, dans l'objectif de repérer les "segments d'intérêt" et éviter un parcours intégral de la vidéo. Deux approches particulières ont été retenues et respectivement développées au sein de chaque partie. La partie 1 propose une utilisation des conditions de prise de vue (CPDV) comme modalités d'indexation. Une évaluation de la qualité image permet ainsi de filtrer les segments temporels de mauvaise qualité et donc inexploitables. La classification du mouvement image apparent directement lié au mouvement caméra, fournit une indexation de séquences vidéo en soulignant notamment les segments potentiels d'intérêt ou au contraire les segments difficiles présentant un mouvement très rapide ou oscillant. La partie 2 explore le contenu dynamique de la séquence vidéo, plus précisément la présence d'objets en mouvement. Une première approche locale en temps est présentée. Elle filtre les résultats d'une première classification par apprentissage supervisé en exploitant les informations de contexte, spatial puis sémantique. Différentes approches globales en temps sont par la suite explorées. De telles approches permettent de garantir la cohérence temporelle des résultats et réduire les fausses alarmes.
|
2 |
Etude des problèmes de conception et de réalisation d'animation : le système SAFRANMartinez, Francis 23 May 1977 (has links) (PDF)
.
|
3 |
Perception visuelle pour les drones légersSkowronski, Robin 03 November 2011 (has links)
Dans cette thèse, en collaboration avec l'entreprise AéroDRONES, le Laboratoire Bordelais de Recherche en Informatique et l'INRIA, nous abordons le problème de la perception de l'environnement à partir d'une caméra embarquée sur un drone léger. Nous avons conçu, développé et validé de nouvelles méthodes de traitement qui optimisent l'exploitation des données produites par des systèmes de prise de vue aéroportés bas coût. D'une part, nous présentons une méthode d'autocalibrage de la caméra et de la tourelle d'orientation, sans condition spécifique sur l'environnement observé. Ensuite nous proposons un nouvel algorithme pour extraire la rotation de la caméra calibrée entre deux images (gyroscope visuel) et l'appliquons à la stabilisation vidéo en temps réel. D'autre part, nous proposons une méthode de géoréférencement des images par fusion avec un fond cartographique existant. Cette méthode permet d'enrichir des bases de données de photos aériennes, en gérant les cas de non-planéité du terrain. / The last decade has seen the emergence of many Unmanned Aerial Vehicles (UAV) which are becoming increasingly cheap and miniaturized. A mounted video-camera is standard equipment and can be found on any such UAVs. In this context, we present robust techniques to enhance autonomy levels of airborne vision systems based on mini-UAV technologies. First, we present a camera autocalibration method based on central projection based image \dimension{2}-invariants analysis and we compare it to classical Dual Image of the Absolute Conic (DIAC) technique. We present also a method to detect and calibrate turret's effectors hierarchy. Then, we propose a new algorithm to extract a calibrated camera self-rotation (visual gyroscope) and we apply it to propose a real-time video stabilizer with full perspective correction.
|
4 |
Filtrage de segments informatifs dans des vidéos / Informative segment filtering in video sequencesGuilmart, Christophe 20 December 2011 (has links)
Les travaux réalisés dans le cadre de cette thèse ont pour objectif d’extraire les différents segments informatifs au sein de séquences vidéo, plus particulièrement aériennes. L’interprétation manuelle de telles vidéos dans une optique de renseignement se heurte en effet au volume des données disponibles. Une assistance algorithmique fondée sur diverses modalités d’indexation est donc envisagée, dans l’objectif de repérer les "segments d’intérêt" et éviter un parcours intégral de la vidéo. Deux approches particulières ont été retenues et respectivement développées au sein de chaque partie. La partie 1 propose une utilisation des conditions de prise de vue (CPDV) comme modalités d’indexation. Une évaluation de la qualité image permet ainsi de filtrer les segments temporels de mauvaise qualité et donc inexploitables. La classification du mouvement image apparent directement lié au mouvement caméra, fournit une indexation de séquences vidéo en soulignant notamment les segments potentiels d’intérêt ou au contraire les segments difficiles présentant un mouvement très rapide ou oscillant. La partie 2 explore le contenu dynamique de la séquence vidéo, plus précisément la présence d’objets en mouvement. Une première approche locale en temps est présentée. Elle filtre les résultats d’une première classification par apprentissage supervisé en exploitant les informations de contexte, spatial puis sémantique. Différentes approches globales en temps sont par la suite explorées. De telles approches permettent de garantir la cohérence temporelle des résultats et réduire les fausses alarmes. / The objective of this thesis is to extract the informative temporal segments from video sequences, more particularly in aerial video. Manual interpretation of such videos for information gathering faces an ever growing volume of available data. We have thus considered an algorithmic assistance based on different modalities of indexation in order to locate "segments of interest" and avoid a complete visualization of the video. We have chosen two methods in particular and have respectively developed them in each part of this thesis. Part 1 describes how viewing conditions can be used as a method of indexation. The assessment of image quality enables to filter out the temporal segments for which the quality is low and which can thus not be exploited. The classification of global image motion, which is directly linked to camera motion, leads to a method of indexation for video sequences. Indeed, it emphasizes possible segments of interest or, conversely, difficult segments for which motion is very fast or oscillating. Part 2 focuses on the dynamic content of video sequences, especially the presence of moving objects. We first present a local (in time) approach. This approach refines the results obtained after a first classification by supervised learning by using contextual information, spatial then semantic information. We have then investigated several methods for moving object detection which are global in time. Such approaches aim to enforce the temporal consistency of the detected objects and to reduce false detections.
|
Page generated in 0.0648 seconds