1 |
Generating Thematic Maps from Hyperspectral Imagery Using a Bag-of-Materials ModelPark, Kyoung Jin 25 July 2013 (has links)
No description available.
|
2 |
Modélisation thématique probabiliste des services webAznag, Mustapha 03 July 2015 (has links)
Les travaux sur la gestion des services web utilisent généralement des techniques du domaine de la recherche d'information, de l'extraction de données et de l'analyse linguistique. Alternativement, nous assistons à l'émergence de la modélisation thématique probabiliste utilisée initialement pour l'extraction de thèmes d'un corpus de documents. La contribution de cette thèse se situe à la frontière de la modélisation thématique et des services web. L'objectif principal de cette thèse est d'étudier et de proposer des algorithmes probabilistes pour modéliser la structure thématique des services web. Dans un premier temps, nous considérons une approche non supervisée pour répondre à différentes tâches telles que la découverte et le regroupement de services web. Ensuite, nous combinons la modélisation thématique avec l'analyse de concepts formels pour proposer une méthode de regroupement hiérarchique de services web. Cette méthode permet une nouvelle démarche de découverte interactive basée sur des opérateurs de généralisation et spécialisation des résultats obtenus. Enfin, nous proposons une méthode semi-supervisée pour l'annotation automatique de services web. Nous avons concrétisé nos propositions par un moteur de recherche en ligne appelé WS-Portal. Nous offrons alors différentes fonctions facilitant la gestion de services web, par exemple, la découverte et le regroupement de services web, la recommandation des tags, la surveillance des services, etc. Nous intégrons aussi différents paramètres tels que la disponibilité et la réputation de services web et plus généralement la qualité de service pour améliorer leur classement (la pertinence du résultat de recherche). / The works on web services management use generally the techniques of information retrieval, data mining and the linguistic analysis. Alternately, we attend the emergence of the probabilistic topic models originally developed and utilized for topics extraction and documents modeling. The contribution of this thesis meets the topics modeling and the web services management. The principal objective of this thesis is to study and propose probabilistic algorithms to model the thematic structure of web services. First, we consider an unsupervised approach to meet different tasks such as web services clustering and discovery. Then we combine the topics modeling with the formal concept analysis to propose a novel method for web services hierarchical clustering. This method allows a novel interactive discovery approach based on the specialization and generalization operators of retrieved results. Finally, we propose a semi-supervised method for automatic web service annotation (automatic tagging). We concretized our proposals by developing an on-line web services search engine called WS-Portal where we incorporate our research works to facilitate web service discovery task. Our WS-Portal contains 7063 providers, 115 sub-classes of category and 22236 web services crawled from the Internet. In WS- Portal, several technologies, i.e., web services clustering, tags recommendation, services rating and monitoring are employed to improve the effectiveness of web services discovery. We also integrate various parameters such as availability and reputation of web services and more generally the quality of service to improve their ranking and therefore the relevance of the search result.
|
3 |
Réseaux de service web : construction, analyse et applications / Web service networks : analysis, construction and applicationsNaim, Hafida 13 December 2017 (has links)
Cette thèse se place dans le cadre de services web en dépassant leur description pour considérer leur structuration en réseaux (réseaux d'interaction et réseaux de similitude). Nous proposons des méthodes basées sur les motifs, la modélisation probabiliste et l'analyse des concepts formels, pour améliorer la qualité des services découverts. Trois contributions sont alors proposées: découverte de services diversifiés, recommandation de services et cohérence des communautés de services détectées. Nous structurons d'abord les services sous forme de réseaux. Afin de diversifier les résultats de la découverte, nous proposons une méthode probabiliste qui se base à la fois sur la pertinence, la diversité et la densité des services. Dans le cas de requêtes complexes, nous exploitons le réseau d'interaction de services construit et la notion de diversité dans les graphes pour identifier les services web qui sont susceptibles d'être composables. Nous proposons également un système de recommandation hybride basé sur le contenu et le filtrage collaboratif. L'originalité de la méthode proposée vient de la combinaison des modèles thématiques et les motifs fréquents pour capturer la sémantique commune maximale d'un ensemble de services. Enfin, au lieu de ne traiter que des services individuels, nous considérons aussi un ensemble de services regroupés sous forme de communautés de services pour la recommandation. Nous proposons dans ce contexte, une méthode qui combine la sémantique et la topologie dans les réseaux afin d'évaluer la qualité et la cohérence sémantique des communautés détectées, et classer également les algorithmes de détection de communautés. / As a part of this thesis, we exceed the description of web services to consider their structure as networks (i.e. similarity and interaction web service networks). We propose methods based on patterns, topic models and formal concept analysis, to improve the quality of discovered services. Three contributions are then proposed: (1) diversified services discovery, (2) services recommendation and (3) consistency of detected communities. Firstly, we propose modeling the space of web services through networks. To discover the diversified services corresponding to a given query, we propose a probabilistic method to diversify the discovery results based on relevancy, diversity and service density. In case of complex requests, it is necessary to combine multiple web services to fulfill this kind of requests. In this regard, we use the interaction web service network and the diversity notion in graphs to identify all possible services compositions. We also propose a new hybrid recommendation system based on both content and collaborative filtering. Its originality comes from the combination of probabilistic topic models and pattern mining to capture the maximal common semantic of a set of services. Finally, instead of processing individual services, we consider a set of services grouped into service communities for the recommendation. We propose in this context, a new method combining both topology and semantics to evaluate the quality and the semantic consistency of detected communities, and also rank the detection communities algorithms.
|
4 |
Vers une représentation du contexte thématique en Recherche d'Information / Generative models of topical context for Information RetrievalDeveaud, Romain 29 November 2013 (has links)
Quand des humains cherchent des informations au sein de bases de connaissancesou de collections de documents, ils utilisent un système de recherche d’information(SRI) faisant office d’interface. Les utilisateurs doivent alors transmettre au SRI unereprésentation de leur besoin d’information afin que celui-ci puisse chercher des documentscontenant des informations pertinentes. De nos jours, la représentation du besoind’information est constituée d’un petit ensemble de mots-clés plus souvent connu sousla dénomination de « requête ». Or, quelques mots peuvent ne pas être suffisants pourreprésenter précisément et efficacement l’état cognitif complet d’un humain par rapportà son besoin d’information initial. Sans une certaine forme de contexte thématiquecomplémentaire, le SRI peut ne pas renvoyer certains documents pertinents exprimantdes concepts n’étant pas explicitement évoqués dans la requête.Dans cette thèse, nous explorons et proposons différentes méthodes statistiques, automatiqueset non supervisées pour la représentation du contexte thématique de larequête. Plus spécifiquement, nous cherchons à identifier les différents concepts implicitesd’une requête formulée par un utilisateur sans qu’aucune action de sa part nesoit nécessaire. Nous expérimentons pour cela l’utilisation et la combinaison de différentessources d’information générales représentant les grands types d’informationauxquels nous sommes confrontés quotidiennement sur internet. Nous tirons égalementparti d’algorithmes de modélisation thématique probabiliste (tels que l’allocationde Dirichlet latente) dans le cadre d’un retour de pertinence simulé. Nous proposonspar ailleurs une méthode permettant d’estimer conjointement le nombre de conceptsimplicites d’une requête ainsi que l’ensemble de documents pseudo-pertinent le plusapproprié afin de modéliser ces concepts. Nous évaluons nos approches en utilisantquatre collections de test TREC de grande taille. En annexes, nous proposons égalementune approche de contextualisation de messages courts exploitant des méthodesde recherche d’information et de résumé automatique / When searching for information within knowledge bases or document collections,humans use an information retrieval system (IRS). So that it can retrieve documentscontaining relevant information, users have to provide the IRS with a representationof their information need. Nowadays, this representation of the information need iscomposed of a small set of keywords often referred to as the « query ». A few wordsmay however not be sufficient to accurately and effectively represent the complete cognitivestate of a human with respect to her initial information need. A query may notcontain sufficient information if the user is searching for some topic in which she is notconfident at all. Hence, without some kind of context, the IRS could simply miss somenuances or details that the user did not – or could not – provide in query.In this thesis, we explore and propose various statistic, automatic and unsupervisedmethods for representing the topical context of the query. More specifically, we aim toidentify the latent concepts of a query without involving the user in the process norrequiring explicit feedback. We experiment using and combining several general informationsources representing the main types of information we deal with on a dailybasis while browsing theWeb.We also leverage probabilistic topic models (such as LatentDirichlet Allocation) in a pseudo-relevance feedback setting. Besides, we proposea method allowing to jointly estimate the number of latent concepts of a query andthe set of pseudo-relevant feedback documents which is the most suitable to modelthese concepts. We evaluate our approaches using four main large TREC test collections.In the appendix of this thesis, we also propose an approach for contextualizingshort messages which leverages both information retrieval and automatic summarizationtechniques
|
Page generated in 0.1564 seconds