• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A concept for nanoparticle-based photocatalytic treatment of wastewater from textile industry

Le, Hoai Nga 14 September 2018 (has links)
Industrial wastewater, such as the effluents from textile and garment companies, may contain toxic organic pollutants, which resist conventional wastewater treatment. Their complete and environmentally friendly degradation requires innovative technologies. Photocatalysis, an advanced oxidation process, can serve this purpose. Since 1972, when the photocatalytic activity of titanium dioxide was first noticed, photocatalysis has drawn the attention of scientists and engineers but it has not yet been widely applied in industrial practice. This is mainly related to the challenges of up-scaling from laboratory experiments to large production sites. The main goal of this thesis is to develop a concept of nanoparticle-based photocatalysis for the treatment of wastewater. Ideally, process parameters should be adjustable and process conditions should be well-defined. These constraints are prerequisite for establishing process models and comparing the photocatalytic efficiency of different photocatalysts or for different pollutants. More importantly, the configuration should be scalable, in order to cover a wide spectrum of applications. In response to these requirements, this thesis introduces a new reactor concept for photocatalytic wastewater treatment, which relies on finely dispersed photocatalysts as well as uniform and defined process conditions with regard to illumination and flow. The concept was realized in a photocatalytic setup with an illuminated flow reactor. The flow channel has a rectangular cross section and meanders in a plane exposed to two dimensional illumination. Crucial process parameters, e.g., volumetric flow rate and light intensity, can be adjusted in a defined manner. This facilitates the study on the photocatalytic degradation of different organic pollutants in the presence of various photocatalytic materials under arbitrary illumination. The thesis provides a comprehensive description of the operational procedures necessary to run photocatalytic reactions in the experimental setup. It includes three main steps: i) dispersion of photocatalysts, ii) equilibration with respect to pollutant adsorption and iii) accomplishing the photocatalytic reaction. Samples are collected in a mixing tank for online or offline analysis. The proceeding decrease in the concentration of organic pollutant is used to assess the activity of the photocatalytic materials. A particular focus lies on the first of these steps, the dispersion of photocatalysts, because it is ignored in most studies. Typically, photocatalysts are in an aggregated state. The thesis demonstrates that type, intensity and energy of dispersion exert a crucial influence on size and morphology of the photocatalyst particles and, thus, on their optical properties and, accordingly, macroscopic photocatalytic behavior. Apart from this, a proper dispersion is necessary to reduce speed of gravitational solid-liquid separation, at best, to prevent catalyst sedimentation and to avoid misleading results. The photocatalytic performance was intensively investigated for the color removal of a model dye substance, methylene blue. Commercial titanium dioxide nanoparticles, widely explored in literature, were used as a photocatalyst. Their characteristics (size, morphology, stability and optical properties) were determined. Photocatalytic experiments were carried out under UV irradiation. Influences of different factors, including the concentration of the photocatalyst, the concentration of the organic compounds, light intensity, optical pathlength and pH were examined. The degradation was quantified via the decrease of methylene blue concentration. This conversion is, however, an immediate result influenced by all process parameters, e.g., the volume, the light intensity, the optical pathlength. Hence, kinetic models on macroscopic and microscopic levels are established. Normalizations with respect to process conditions are proposed. The apparent reaction kinetics are traced back to volume- and intensity-related reaction rate constants, and the reaction rate constant at the illuminated surface of the reactor. Additionally, the model is modified to be used for time-variant UV intensities, as encountered for solar photocatalysis. These achievements allow for a comparison of the experimental results from different laboratories. Moreover, they are prerequisite for the translation of laboratory results into large scale plants. Selected case studies for further applications are introduced. The photocatalytic degradation of different organic molecules (one antibiotic and two commercial dyes) with different photocatalytic materials (commercial nanomaterials and self-synthesized magnetic particles) under artificial or natural light sources was performed. Additionally, photocatalysis was studied in a realistic application. Preliminary tests with dye solutions of a textile company in Danang, Vietnam, impressively showed the feasibility of wastewater treatment by means of photocatalysis. Based on the reported capacity of wastewater in the current treatment plant of the company, the necessary process parameters were assessed. The rough estimation showed that photocatalysis can improve the working ability of the current wastewater treatment plant. In conclusion, this thesis presents a concept for wastewater treatment by slurry photocatalysis. As the process conditions are adjustable and definable, the process can be ideally performed in laboratories for research purposes, where different materials need to be tested and the working volume can be lower than hundreds of milliliters. The photocatalytic configuration is expected to work with a capacity of hundreds of liters, although appropriate experimental evidences are reserved for further up-scaling studies.
12

Odhad parametru ve stochastických diferenciálních rovnicích / Parameter Estimation in Stochastic Differential Equations

Pacák, Daniel January 2020 (has links)
In the Thesis the problem of estimating an unknown parameter in a stochastic dif- ferential equation is studied. Linear equations with Volterra process as the source of noise are considered. Firstly, the properties of Volterra processes and the properties of stochastic integral with respect to a Volterra process are presented. Secondly, the prop- erties of the solution to the equation under consideration are discussed. This includes the existence of the strictly stationary solution, the properties of such solution and ergodic results. These results are then generalized to equations with a mixed noise. Ergodic results are used to derive strongly consistent estimators of the unknown parameter. 1
13

Systematic Generation of Lack-of-Fusion Defects for Effects of Defects Studies in Laser Powder Bed Fusion AlSi10Mg

De Silva Jayasekera, Varthula Janya 28 August 2020 (has links)
No description available.
14

Beitrag zur Optimierung der Verfahrensparameter von Vliesstoffausrüstungsprozessen bei hohen Warengeschwindigkeiten / Contribution to optimisation of process parameters of nonwoven finishing processes at high speeds

Grönke, Kerstin 15 December 2014 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die Untersuchung des Foulardierprozesses zur chemischen Nassausrüstung von Vliesstoffen bei Warengeschwindigkeiten bis zu 250 m/min. Hintergrund ist die abweisende Ausrüstung von Polypropylen-Spinnvliesstoffen für die Anwendung als Operationskittel. Wo bislang nach dem Stand der Technik eine Veredlung bei Lohnausrüstern bei geringen Warengeschwindigkeiten durchgeführt wurde, zeigt die Tendenz in der Vliesstoffindustrie in Richtung der eigenen Prozessbeherrschung. Eine grundlegende Voraussetzung, um den Foulardierprozess für diese Anwendung nutzbar zu machen, ist die Kenntnis über die Prozesseigenschaften bei den geforderten hohen Warengeschwindigkeiten. Für den abzudeckenden Versuchsraum mit sechs Einflussgrößen bei jeweils drei Faktorstufen wurde mittels der Methodik der statistischen Versuchsplanung ein D-optimaler Versuchsplan erstellt. Die Versuchsdurchführung erfolgte auf einem in eine Technikumsanlage eingebundenen Foulard mit horizontaler Walzenanordnung. Für jede der sieben Zielgrößen wurde auf Grundlage der erhaltenen Messwerte eine lineare Regressionsanalyse erstellt und ausgewertet. Eine detaillierte Analyse und Diskussion der Regressionsmodelle liefert Informationen zu Wirkungsrichtung und Intensität der einzelnen Einflussgrößen sowie zu Faktor-Faktor-Wechselwirkungen. / The subject of the work presented here is the study of the padding process for the chemical wet finishing of nonwovens at web speeds up to 250 m/min. Background to the topic is the repellent treatment of polypropylene spunbond nonwovens applied for surgical gowns. Finishing carried out at subcontractors corresponding to best practice technology up to now, the trend in the nonwovens industry is turning towards an in-house process mastery. Essential requirement to make the padding process technologically exploitable for this kind of application is the knowledge of the process characteristics at the high web speeds claimed. For the experimental scenario to be covered comprising six determining factors at three level steps each, a D-optimal trial plan was defined using the statistic method of the design of experiments (DOE). The realization of the trials carried out on a padder with horizontal roll arrangement installed in a pilot line. For each of the seven responses a linear regression analyses was compiled and evaluated. A detailed analysis and discussion of the regression models provides information on direction of influence as well as intensity of each of the determining factors and factor-factor-interactions.
15

Study of process parameters in laser beam welding of copper hairpins

Lönn, Dan, Spångberg, David January 2022 (has links)
This study had the purpose to further the use of industrial lasers in the manufacturing of hairpin electric motors by optimizing the process of contacting the hairpins. A problem with laser beam welding of copper is the porosity created in the process which can lead to increased resistance of the welded region along with degraded mechanical properties. By experiment this study aimed to find the optimal parameters to reduce the porosity while maintaining all other requirements for the weld. The track of achieving a satisfactory simulation was done to minimize the need of physical experiments which can be argued as a sustainable development aspect. A set of parameters was found that achieved a low volume of pores, a sufficient weld depth and a desirable bead geometry. Some pores still remained, mostly at the endpoint of the laser path which could be caused by the laser shut-off leading to a keyhole collapse enclosing some pores in that region. The simulation showed promising results in welding depth and melt region. Further work on ramping the laser power at the endpoint could be beneficial for eliminating the remaining porosity as well as refining the simulation in terms of porosity.
16

Feasibility of Attaining Fully Equiaxed Microstructure through Process Variable Control for Additive Manufacturing of Ti-6Al-4V

Kuntz, Sarah Louise 01 June 2016 (has links)
No description available.
17

Temperiertes Innenhochdruck-Umformen von Rohren aus Magnesium- und Aluminiumlegierungen

Seifert, Michael 25 November 2008 (has links) (PDF)
Die Anwendungsmöglichkeiten und Potenziale des temperierten Innenhochdruck-Umformens mit flüssigen Wirkmedien (T-IHU) von Rohren aus verschiedenen Magnesium- und Aluminiumknetlegierungen werden in der vorliegenden Arbeit aufgezeigt. Neben der Werkstoff- und Halbzeugcharakterisierung, der Auslegung von temperierten Innenhochdruck-Umformanlagen und –werkzeugen, den Thermografiemessungen am Halbzeug unter Realbedingungen und der Verifizierung der Simulationsergebnisse des T-IHU-Werkzeuges war der inhaltliche Schwerpunkt die systematische experimentelle Bestimmung der maximalen Umfangserweiterung ∆u<sub>max</sub> in Anhängigkeit von der Umformtemperatur ϑ<sub>u</sub>, dem Werkstoff und der Wanddicke s<sub>0</sub> im Temperaturbereich von 22°C bis 300°C an drei Versuchsgeometrien T-Stück, Zylinder und Quader bei Innendrücken bis 800 bar. Neben dem Einfluss der Prozessparameter, der Werkstoff- und Halbzeugeigenschaften und der Ausgangswanddicke wurde der signifikante Einfluss der Umformtemperatur und der Umformgeometrie auf die erreichbaren Umfangserweiterungen herausgearbeitet und systematisch dargestellt. Es wurden Umfangsdehnungen von bis zu 120 % (bei ϑ<sub>u</sub> = 300°C) erzielt. Die experimentelle Bestimmung der minimal auszuformenden Bauteilaußenradien erfolgte unter Anwendung der statistischen Versuchsplanung. Aus den Regressionsgleichungen wurde eine neue Berechnungsgleichung für den maximalen Innendruck p<sub>imax</sub> generiert. Durch die Verifikation dieser Gleichung konnte die hohe Genauigkeit bei der Vorausberechnung des erforderlichen Innendruckes bei einem vorgegebenen minimalen Bauteilaußenradius R<sub>min</sub> in Abhängigkeit von der Zugfestigkeit R<sub>m</sub> als f (Umformtemperatur) und der Wanddicke s<sub>0</sub> nachgewiesen werden. Die Auslegung der T-IHU-Werkzeug- und Anlagentechnik kann damit wesentlich genauer er­folgen. Durch die Bauteilanalysen nach dem T-IHU-Prozess konnten die hohe Maß- und Formgenauigkeit und die hohe und gleichmäßigere Oberflächengüte nachgewiesen werden. Trotz der beginnenden dynamischen Rekristallisation lag bei allen Versuchswerkstoffen eine Erhöhung der Werkstofffestigkeit in der Umformzone vor. Bei den Untersuchungen bzgl. des T-IHU des Realbauteiles „PKW-Querträger vorn“ konnten die Kenntnisse der Grundlagenuntersuchungen auf ein komplex geformtes Realteil übertragen und erweitert werden. Es zeigte sich, dass der Einsatz von T-IHU-Magnesiumbauteilen ein erhebliches Potenzial für weitere Gewichtsreduzierungen von Leichtbaukonstruktionen besitzt. / This paper presents the potential applications of temperature-supported hydroforming of various magnesium and aluminium alloy tubes using active liquid media. It includes details of material and semi-finished product characterisation, the design of temperature-supported hydroforming equipment and tools, thermography measurements on the semi-finished product under real conditions and verification of simulation results for the temperature-supported hydroforming tool. The main focus, however, was the systematic, experimental approach to determining the maximum increase in perimeter ∆u<sub>max</sub> as a function of the forming temperature ϑ<sub>u</sub>, the material and the wall thickness s<sub>0</sub> in the temperature range 22°C to 300°C for three trial geometries (T‑piece, cylinder and cuboid) at internal pressures of up to 800 bar. In addition to studying the effect of process parameters, material properties, semi-finished product characteristics and initial wall thickness, the paper also presents the finding that forming temperature and forming geometry have a significant impact on achievable increases in perimeter. Perimeter expansions of up to 120 % were attained (at ϑ<sub>u</sub> = 300°C). Statistically designed experiments were used to determine the minimum component outside-radii to undergo the forming process. A new equation for calculating the maximum internal pressure p<sub>imax</sub> was generated from regression equations. By verifying this equation, it was possible to demonstrate the high level of accuracy in predicting the internal pressure required for a given minimum component outside-radius R<sub>min</sub> as a function of the tensile strength R<sub>m</sub> as f(forming temperature) and of the wall thickness s<sub>0</sub>. This means that the temperature-supported hydroforming tool and system equipment can be designed far more accurately. Component analyses after the temperature-supported hydroforming process demonstrated the high level of dimensional and geometrical accuracy and the high quality and more consistent surface finish. Despite the onset of dynamic re-crystallisation, the strength of the material was increased in the forming zone in all the materials tested. The knowledge gained from researching the fundamental principles was applied to a real component with a complex shape in studies of temperature-supported hydroforming of the "front car cross-member", which provided further useful insights. It was found that the use of temperature-supported hydroforming magnesium components has considerable potential for further weight reduction in lightweight constructions.
18

Temperiertes Innenhochdruck-Umformen von Rohren aus Magnesium- und Aluminiumlegierungen

Seifert, Michael 06 June 2008 (has links)
Die Anwendungsmöglichkeiten und Potenziale des temperierten Innenhochdruck-Umformens mit flüssigen Wirkmedien (T-IHU) von Rohren aus verschiedenen Magnesium- und Aluminiumknetlegierungen werden in der vorliegenden Arbeit aufgezeigt. Neben der Werkstoff- und Halbzeugcharakterisierung, der Auslegung von temperierten Innenhochdruck-Umformanlagen und –werkzeugen, den Thermografiemessungen am Halbzeug unter Realbedingungen und der Verifizierung der Simulationsergebnisse des T-IHU-Werkzeuges war der inhaltliche Schwerpunkt die systematische experimentelle Bestimmung der maximalen Umfangserweiterung ∆u<sub>max</sub> in Anhängigkeit von der Umformtemperatur ϑ<sub>u</sub>, dem Werkstoff und der Wanddicke s<sub>0</sub> im Temperaturbereich von 22°C bis 300°C an drei Versuchsgeometrien T-Stück, Zylinder und Quader bei Innendrücken bis 800 bar. Neben dem Einfluss der Prozessparameter, der Werkstoff- und Halbzeugeigenschaften und der Ausgangswanddicke wurde der signifikante Einfluss der Umformtemperatur und der Umformgeometrie auf die erreichbaren Umfangserweiterungen herausgearbeitet und systematisch dargestellt. Es wurden Umfangsdehnungen von bis zu 120 % (bei ϑ<sub>u</sub> = 300°C) erzielt. Die experimentelle Bestimmung der minimal auszuformenden Bauteilaußenradien erfolgte unter Anwendung der statistischen Versuchsplanung. Aus den Regressionsgleichungen wurde eine neue Berechnungsgleichung für den maximalen Innendruck p<sub>imax</sub> generiert. Durch die Verifikation dieser Gleichung konnte die hohe Genauigkeit bei der Vorausberechnung des erforderlichen Innendruckes bei einem vorgegebenen minimalen Bauteilaußenradius R<sub>min</sub> in Abhängigkeit von der Zugfestigkeit R<sub>m</sub> als f (Umformtemperatur) und der Wanddicke s<sub>0</sub> nachgewiesen werden. Die Auslegung der T-IHU-Werkzeug- und Anlagentechnik kann damit wesentlich genauer er­folgen. Durch die Bauteilanalysen nach dem T-IHU-Prozess konnten die hohe Maß- und Formgenauigkeit und die hohe und gleichmäßigere Oberflächengüte nachgewiesen werden. Trotz der beginnenden dynamischen Rekristallisation lag bei allen Versuchswerkstoffen eine Erhöhung der Werkstofffestigkeit in der Umformzone vor. Bei den Untersuchungen bzgl. des T-IHU des Realbauteiles „PKW-Querträger vorn“ konnten die Kenntnisse der Grundlagenuntersuchungen auf ein komplex geformtes Realteil übertragen und erweitert werden. Es zeigte sich, dass der Einsatz von T-IHU-Magnesiumbauteilen ein erhebliches Potenzial für weitere Gewichtsreduzierungen von Leichtbaukonstruktionen besitzt. / This paper presents the potential applications of temperature-supported hydroforming of various magnesium and aluminium alloy tubes using active liquid media. It includes details of material and semi-finished product characterisation, the design of temperature-supported hydroforming equipment and tools, thermography measurements on the semi-finished product under real conditions and verification of simulation results for the temperature-supported hydroforming tool. The main focus, however, was the systematic, experimental approach to determining the maximum increase in perimeter ∆u<sub>max</sub> as a function of the forming temperature ϑ<sub>u</sub>, the material and the wall thickness s<sub>0</sub> in the temperature range 22°C to 300°C for three trial geometries (T‑piece, cylinder and cuboid) at internal pressures of up to 800 bar. In addition to studying the effect of process parameters, material properties, semi-finished product characteristics and initial wall thickness, the paper also presents the finding that forming temperature and forming geometry have a significant impact on achievable increases in perimeter. Perimeter expansions of up to 120 % were attained (at ϑ<sub>u</sub> = 300°C). Statistically designed experiments were used to determine the minimum component outside-radii to undergo the forming process. A new equation for calculating the maximum internal pressure p<sub>imax</sub> was generated from regression equations. By verifying this equation, it was possible to demonstrate the high level of accuracy in predicting the internal pressure required for a given minimum component outside-radius R<sub>min</sub> as a function of the tensile strength R<sub>m</sub> as f(forming temperature) and of the wall thickness s<sub>0</sub>. This means that the temperature-supported hydroforming tool and system equipment can be designed far more accurately. Component analyses after the temperature-supported hydroforming process demonstrated the high level of dimensional and geometrical accuracy and the high quality and more consistent surface finish. Despite the onset of dynamic re-crystallisation, the strength of the material was increased in the forming zone in all the materials tested. The knowledge gained from researching the fundamental principles was applied to a real component with a complex shape in studies of temperature-supported hydroforming of the "front car cross-member", which provided further useful insights. It was found that the use of temperature-supported hydroforming magnesium components has considerable potential for further weight reduction in lightweight constructions.
19

Beitrag zur Optimierung der Verfahrensparameter von Vliesstoffausrüstungsprozessen bei hohen Warengeschwindigkeiten

Grönke, Kerstin 19 September 2014 (has links)
Gegenstand der vorliegenden Arbeit ist die Untersuchung des Foulardierprozesses zur chemischen Nassausrüstung von Vliesstoffen bei Warengeschwindigkeiten bis zu 250 m/min. Hintergrund ist die abweisende Ausrüstung von Polypropylen-Spinnvliesstoffen für die Anwendung als Operationskittel. Wo bislang nach dem Stand der Technik eine Veredlung bei Lohnausrüstern bei geringen Warengeschwindigkeiten durchgeführt wurde, zeigt die Tendenz in der Vliesstoffindustrie in Richtung der eigenen Prozessbeherrschung. Eine grundlegende Voraussetzung, um den Foulardierprozess für diese Anwendung nutzbar zu machen, ist die Kenntnis über die Prozesseigenschaften bei den geforderten hohen Warengeschwindigkeiten. Für den abzudeckenden Versuchsraum mit sechs Einflussgrößen bei jeweils drei Faktorstufen wurde mittels der Methodik der statistischen Versuchsplanung ein D-optimaler Versuchsplan erstellt. Die Versuchsdurchführung erfolgte auf einem in eine Technikumsanlage eingebundenen Foulard mit horizontaler Walzenanordnung. Für jede der sieben Zielgrößen wurde auf Grundlage der erhaltenen Messwerte eine lineare Regressionsanalyse erstellt und ausgewertet. Eine detaillierte Analyse und Diskussion der Regressionsmodelle liefert Informationen zu Wirkungsrichtung und Intensität der einzelnen Einflussgrößen sowie zu Faktor-Faktor-Wechselwirkungen.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180 / The subject of the work presented here is the study of the padding process for the chemical wet finishing of nonwovens at web speeds up to 250 m/min. Background to the topic is the repellent treatment of polypropylene spunbond nonwovens applied for surgical gowns. Finishing carried out at subcontractors corresponding to best practice technology up to now, the trend in the nonwovens industry is turning towards an in-house process mastery. Essential requirement to make the padding process technologically exploitable for this kind of application is the knowledge of the process characteristics at the high web speeds claimed. For the experimental scenario to be covered comprising six determining factors at three level steps each, a D-optimal trial plan was defined using the statistic method of the design of experiments (DOE). The realization of the trials carried out on a padder with horizontal roll arrangement installed in a pilot line. For each of the seven responses a linear regression analyses was compiled and evaluated. A detailed analysis and discussion of the regression models provides information on direction of influence as well as intensity of each of the determining factors and factor-factor-interactions.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180
20

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)

Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.

Page generated in 0.11 seconds